1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
#include "parser.h"
#include "printer.h"
#include "polynomial.h"
#include "division.h"
#include "buchberger.h"
#include "wallideal.h"
#include "lp.h"
#include "reversesearch.h"
#include "termorder.h"
#include "ep_standard.h"
#include "ep_xfig.h"
#include "gfanapplication.h"
#include "polyhedralcone.h"
#include "polyhedralfan.h"
#include "tropical.h"
#include "tropical2.h"
#include "symmetry.h"
#include "halfopencone.h"
#include "symmetrictraversal.h"
#include "traverser_groebnerfan.h"
#include "tropical_weildivisor.h"
#include "log.h"
class SymmetricTargetTropicalBasisTester : public SymmetricTarget
{
public:
PolynomialSet g;
SymmetricTargetTropicalBasisTester(PolynomialSet const &g_):
g(g_)
{
}
bool process(ConeTraverser &traverser)
{
IntegerVector w=traverser.refToPolyhedralCone().getRelativeInteriorPoint();
log2 AsciiPrinter(Stderr) << "Testing weight vector:\n"<<w<<"\n";
WeightReverseLexicographicTermOrder T(w);
buchberger(&g,T);
PolynomialSet temp=initialForms(g,w);
if(containsMonomial(temp))
{
AsciiPrinter(Stdout)<<"The following vector is in intersection, but initial ideal contains a monomial:\n"<<w;
assert(0);
}
}
};
class HalfOpenConeProcessorTropicalBasisTester :public HalfOpenConeProcessor
{
PolynomialSet g;
public:
void process(HalfOpenCone const &c)
{
HalfOpenCone c2=c;
PolyhedralCone C=c2.closure();
GroebnerFanTraverser traverser(groebnerBasisWithFullDimensionalIntersection(g,C),C);
SymmetricTargetTropicalBasisTester target(g);
symmetricTraverse(traverser,target);
}
HalfOpenConeProcessorTropicalBasisTester(PolynomialSet const &g_):
g(g_)
{
}
};
class TropicalIntersectionApplication : public GFanApplication
{
SimpleOption optionTestIfTropicalBasis;
SimpleOption optionTPlane;
// SimpleOption optionIncidencePrinting;
SimpleOption optionParseSymmetry;
SimpleOption optionExploitSymmetry;
// SimpleOption optionMinkowskiRefinement;
SimpleOption optionIgnoreCones;
SimpleOption optionRestrict;
// SimpleOption optionXml;
IntegerOption optionLow;
IntegerOption optionHigh;
SimpleOption optionStableIntersection;
public:
const char *helpText()
{
return "This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces.\n";
//"The fan will be presented as a list of some of its closed cones. If a cone is a face of another cone in the fan it is not guaranteed to be listed. But the support of the fan will be the union of the listed cones.\n";
}
TropicalIntersectionApplication():
// optionXml("--xml","Produce a polymake file in XML format.\n"),
optionTestIfTropicalBasis("-t","Note that the input polynomials generate an ideal. This option will make the program choose a relative interior point for each listed output cone and check if its initial ideal contains a monomial. The actual check is done on a homogenization of the input ideal, but this does not affect the result.\n"),
optionTPlane("--tplane","This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that \"stuff at infinity\" (where x_0=0) is not removed."),
optionRestrict("--restrict","Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms."),
//optionIncidencePrinting("--incidence","Print incidence information of the fan. Only faces of maximal dimensional cones will be printed, so this works best if the fan is pure.")
optionParseSymmetry("--symmetryPrinting","Parse a group of symmetries after the input has been read. Used when printing with --incidence."),
// optionMinkowskiRefinement("--minkowski","Compute the normal fan of the Minkowski sum of the Newton polytopes instead.")
optionExploitSymmetry("--symmetryExploit","Restrict computation to the closed lexicographic fundamental domain of the specified symmetry group. This overwrites --restrict."),
optionIgnoreCones("--nocones","Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used."),
optionHigh("--endcone","Specify interval [start,end[ of indices of the first fan (after appropriate reordering) which the computation is restricted to. Only with --restrict or --symmetryExploit. Useful for parallelizing a computation manually.",-1),
optionLow("--startcone","Specify interval [start,end[ of indices of the first fan (after appropriate reordering) which the computation is restricted to. Only with --restrict or --symmetryExploit. Useful for parallelizing a computation manually.",-1),
optionStableIntersection("--stable","Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored.")
{
registerOptions();
// optionXml.hide();
optionLow.hide();
optionHigh.hide();
}
const char *name()
{
return "_tropicalintersection";
}
int main()
{
FileParser P(Stdin);
PolynomialSet theInput=P.parsePolynomialSetWithRing();
int n=theInput.numberOfVariablesInRing();
if(optionStableIntersection.getValue())
{
PolyhedralFan f=PolyhedralFan::fullSpace(n);
for(PolynomialSet::const_iterator i=theInput.begin();i!=theInput.end();i++)
{
PolyhedralFan f2=PolyhedralFan::normalFanOfNewtonPolytope(*i);
if(f.size()==0)break;
f=weilDivisor(f,f2);
}
f.printWithIndices(&pout,
FPF_multiplicities|
(optionParseSymmetry.getValue()?FPF_group|FPF_conesCompressed:0)|
(optionIgnoreCones.getValue()?0:FPF_conesExpanded)|
(optionTPlane.getValue()?FPF_boundedInfo|FPF_tPlaneSort:0)|
FPF_maximalCones|FPF_cones,0);
return 0;
}
SymmetryGroup sym(n);
if(optionParseSymmetry.getValue()||optionExploitSymmetry.getValue())sym.computeClosure(P.parseIntegerVectorList());
PolyhedralFan F(n);
/* if(optionMinkowskiRefinement.getValue())
{
F=PolyhedralFan::fullSpace(n);
for(PolynomialSet::const_iterator i=theInput.begin();i!=theInput.end();i++)
F=refinement(F,PolyhedralFan::normalFanOfNewtonPolytope(*i),n-1,false);
}
else*/
if(optionTestIfTropicalBasis.getValue())
{
HalfOpenConeProcessorTropicalBasisTester myProcessor(theInput);
tropicalHyperSurfaceIntersectionWithProcessor(n,theInput, myProcessor);
}
if(0)
{
F=tropicalPrincipalIntersection(n, theInput); // dimension of lineality space could be computed to speed up computations
}
else
{
// log1 fprintf(Stderr,"WARINING USING EXPERIMENTAL TROPICAL HYPERSURFACE INTERSECTION ROUTINE!!\n");
if(optionRestrict.getValue()||optionExploitSymmetry.getValue())
{
IntegerVectorList inequalities;
IntegerVectorList equations;
if(optionRestrict.getValue())
{
PolynomialSet theConeAsPolys=P.parsePolynomialSet(theInput.getRing());
inequalities=wallInequalities(theConeAsPolys);
}
else
{
inequalities=sym.fundamentalDomainInequalities();
equations=commonHomogeneitySpaceGenerators(theInput);
}
PolyhedralCone c(inequalities,equations,n);
c.canonicalize();
AsciiPrinter P(Stderr);
c.print(&P);
F=tropicalHyperSurfaceIntersectionClosed(n, theInput,&c,true,/*true*/false,optionLow.getValue(),optionHigh.getValue());//saveresult==false
}
else
F=tropicalHyperSurfaceIntersectionClosed(n, theInput);
}
if(optionTPlane.getValue())
{
PolyhedralFan temp=PolyhedralFan::halfSpace(n,0);
F=refinement(F,temp);
}
// if(optionIncidencePrinting.getValue())
{
AsciiPrinter p(Stdout);
PolyhedralFan a=F;
//a.makePure();
/////////a.printWithIndices(&p,false,&sym,false,false,optionXml.getValue(),optionTPlane.getValue());
a.printWithIndices(&p,
FPF_multiplicities|
(optionParseSymmetry.getValue()?FPF_group|FPF_conesCompressed:0)|
(optionIgnoreCones.getValue()?0:FPF_conesExpanded)|
(optionTPlane.getValue()?FPF_boundedInfo|FPF_tPlaneSort:0)|
FPF_maximalCones|FPF_cones,
// FPF_default|
// (optionParseSymmetry.getValue()?FPF_group|FPF_conesCompressed:0) |
// (optionXml.getValue()?FPF_xml:0) |
// (optionTPlane.getValue()?FPF_boundedInfo|FPF_tPlaneSort:0),
&sym);
// a.printWithIndices(&p,false,&sym,optionParseSymmetry.getValue(),false,optionXml.getValue(),optionTPlane.getValue());
}
//AsciiPrinter(Stdout).printPolyhedralFan(F);
// AsciiPrinter Temp(Stdout);
// F.printWithIndices(&Temp,false,0);
/* if(optionTestIfTropicalBasis.getValue())
{
fprintf(Stdout,"\nA list of relative interior points:\n");
AsciiPrinter(Stdout).printVectorList(F.getRelativeInteriorPoints());
PolynomialSet I=theInput;
IntegerVector grading=IntegerVector::allOnes(I.numberOfVariablesInRing());
PolynomialSet h=I.homogenization(I.getRing().withVariablesAppended("H"));
IntegerVectorList r=F.getRelativeInteriorPoints();
IntegerVectorList trueRays;
IntegerVectorList falseRays;
for(IntegerVectorList::const_iterator i=r.begin();i!=r.end();i++)
{
int n=h.numberOfVariablesInRing();
IntegerVector weight(n);
for(int j=0;j<n-1;j++)weight[j]=(*i)[j];
weight[n-1]=0;
PolynomialSet h2=h;
{
WeightReverseLexicographicTermOrder t(weight);
fprintf(Stdout,"Computing the initial ideal with respect to:");
AsciiPrinter(Stdout).printVector(weight);
fprintf(Stdout,"\n");
buchberger(&h2,t);
fprintf(Stdout,"Done computing the initial ideal.\n");
}
PolynomialSet wall=initialFormsAssumeMarked(h2,weight);
if(containsMonomial(wall))
{
fprintf(Stdout,"The (homogenized) initial ideal contains a monomial: ");
AsciiPrinter(Stdout).printPolynomial(Polynomial(computeTermInIdeal(wall)));
fprintf(Stdout,"\n");
falseRays.push_back(*i);
}
else
{
fprintf(Stdout,"The initial ideal contains no monomial.\n");
trueRays.push_back(*i);
}
fprintf(Stdout,"\n");
}
fprintf(Stdout,"The set of tested interior points that are in the tropical variety of the ideal generated by the input:\n");
AsciiPrinter(Stdout).printVectorList(trueRays);
fprintf(Stdout,"The set of tested interior points that are not in the tropical variety of the ideal generated by the input:\n");
AsciiPrinter(Stdout).printVectorList(falseRays);
}*/
return 0;
}
};
static TropicalIntersectionApplication theApplication;
|