1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
// To do: The facet detection in this file may not work for non-homogeneous ideals since facets pass the test even if they do not contain a positive vector. Check if this is the case and fix the bug.
#include "breadthfirstsearch.h"
#include "buchberger.h"
#include "wallideal.h"
#include "printer.h"
#include "polyhedralcone.h"
#include "polyhedralfan.h"
#include "lp.h"
#include "log.h"
#include <iostream>
bool findPermutationTakingVectorToCone(SymmetryGroup const &s, PolyhedralCone const &cone, IntegerVector const &w, IntegerVector &perm, IntegerVector const &facetNormal)
{//Assume full dimensional
log3 AsciiPrinter(Stderr)<<"Find perm called on, w" <<w << "facet normal"<<"\n";
IntegerVectorList inequalities=cone.getHalfSpaces();
// unsigned char *table=s.getByteTable();
int n=s.sizeOfBaseSet();
/* if(table)
{
IntegerVector w2=w;
int tableHeight=s.getByteTableHeight();
for(int i=0;i<tableHeight;i++)
{
bool inCone=true;
for(int j=0;j<n;j++)w2[j]=w[table[j+n*i]];
for(IntegerVectorList::const_iterator k=inequalities.begin();k!=inequalities.end();k++)
if(dot(w2,*k)<0)
{
inCone=false;
break;
}
if(inCone)
{
perm=IntegerVector(n);
for(int j=0;j<n;j++)perm[j]=table[j+n*i];
return true;
}
}
}
else*/
IntegerVector relInt=cone.getRelativeInteriorPoint();
log3 AsciiPrinter(Stderr)<<"Inequalities"<<inequalities<<"\n";
log3 AsciiPrinter(Stderr)<<"Rel int"<<relInt<<"\n";
log3 AsciiPrinter(Stderr)<<"Omega"<<w<<"\n";
log3 AsciiPrinter(Stderr)<<"Facet normal"<< facetNormal<<"\n";
{
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
{
if(dotLong(relInt,SymmetryGroup::compose(*j,facetNormal))<0)
if(cone.contains(SymmetryGroup::compose(*j,w)))
{
perm=*j;
log3 AsciiPrinter(Stderr)<<"TRUE\n";
return true;
}
}
}
log3 AsciiPrinter(Stderr)<<"FALSE\n";
return false;
}
PolyhedralCone coneFromMarkedBasis(PolynomialSet const &g)
{
int n=g.getRing().getNumberOfVariables();
// log0 fprintf(Stderr,"B\n");
IntegerVectorList normals=fastNormals(wallInequalities(g));
// log0 AsciiPrinter(Stderr)<<normals
// log0 fprintf(Stderr,"Z\n");
IntegerVectorList empty;
return PolyhedralCone(normals,empty,n);
// cone.findFacets();
}
BreadthFirstSearch::BreadthFirstSearch(const SymmetryGroup &symmetryGroup_, bool minkowski_):
numberOfVertices(0),
numberOfEdges(0),
symmetryGroup(symmetryGroup_),
minkowski(minkowski_)
{
}
class Orbit{
static list<int> computePolynomialLengths(const PolynomialSet &s)
{
list<int> l;
for(PolynomialSet::const_iterator i=s.begin();i!=s.end();i++)
l.push_back(i->numberOfTerms());
l.sort();
return l;
}
public:
class Summary{
int numberOfPolynomials;
list<int> polynomialLengths;
IntegerVector sortedExponentsSum;
public:
Summary(PolynomialSet const &g)
{
polynomialLengths=computePolynomialLengths(g);
numberOfPolynomials=g.size();
PolynomialSet p=g.markedTermIdeal();
sortedExponentsSum=p.exponentsSum();
sortedExponentsSum.sort();
}
bool operator==(Summary const &b)const
{
if(b.numberOfPolynomials!=numberOfPolynomials)return false;
if(b.sortedExponentsSum!=sortedExponentsSum)return false;
list<int>::const_iterator i=polynomialLengths.begin();
for(list<int>::const_iterator j=b.polynomialLengths.begin();j!=b.polynomialLengths.end();j++)
{
if(*j!=*i)return false;
i++;
}
return true;
}
};
private:
const SymmetryGroup &s;
PolynomialSet const *originalG;
PolynomialSet g;
// PolynomialSet initialIdeal;
IntegerVectorList markedFacets;
PolyhedralCone cone;
Summary theSummary;
public:
IntegerVector stableRay;
Orbit(const PolynomialSet &g_, const SymmetryGroup &s_, PolynomialSet const *originalG_=0):
s(s_),
g(g_),
// initialIdeal(g_.markedTermIdeal()),
cone(g_.getRing().getNumberOfVariables()),
theSummary(g_),
originalG(originalG_)
//g(g_.markedTermIdeal()) //monomialideal
{
g.sort_();
//initialIdeal.sort_();//added 27.02.2008
cone=coneFromMarkedBasis(g);
stableRay=PolyhedralFan::stableRay(cone,&s);
// log0 fprintf(Stderr,"Stable ray found\n");
if(originalG)g=PolynomialSet(g.getRing());// Forget basis if Minkowskisum
}
const PolynomialSet representative()const
{
if(originalG)// Reconstruct basis if Minkowskisum
{
PolynomialSet gret=*originalG;
WeightTermOrder T(stableRay);
gret.markAndScale(T);
return gret;
}
return g;
}
const IntegerVectorList &getMarkedFacets()const
{
return markedFacets;
}
IntegerVectorList getFacets()const
{
return cone.getHalfSpaces();
}
void markFacet(const IntegerVector &facet)
{
markedFacets.push_back(facet);
}
bool containsAndMark(const PolynomialSet &p_, Summary const &theSummary, IntegerVector const &w, const IntegerVector &v)
{
// log0 fprintf(stderr,"containsAndMark\n");
//PolynomialRing theRing=p_.getRing();
// PolynomialSet p=p_.markedTermIdeal();
if(!(theSummary==this->theSummary))return false;
{
/* PolynomialSet &g=initialIdeal;
// simple tests
if(p.size()!=g.size())return false;
{
list<int> P=polynomialLengths(p);
list<int> G=polynomialLengths(g);
list<int>::const_iterator i=P.begin();
for(list<int>::const_iterator j=G.begin();j!=G.end();j++)
{
if(*j!=*i)return false;
i++;
}
}
{
vector<int> a;
// sort(a.begin(),a.end());
IntegerVector P=p.exponentsSum();
IntegerVector G=g.exponentsSum();
P.sort();
G.sort();
if(P!=G)return false;
}
*/
// checking all elements
IntegerVector perm;
if(findPermutationTakingVectorToCone(s,cone,w,perm,v))
{
markFacet(SymmetryGroup::compose(perm,v));
return true;
}
/*
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
{
if(cone.contains(SymmetryGroup::compose(*j,w)))
{
markFacet(SymmetryGroup::compose(*j,v));
return true;
}
}*/
}
// log0 fprintf(stderr,"ret\n");
return false;
}
bool permutationFixesInitialIdeal(IntegerVector const &v)
{
/* PolynomialSet G=g.markedTermIdeal();
G.sort_();
PolynomialSet q(G.getRing());
for(PolynomialSet::const_iterator i=G.begin();i!=G.end();i++)
{
q.push_back(SymmetryGroup::permutePolynomial(*i,v));
}
q.sort_();
return (q==G);
*/
return SymmetryGroup::compose(v,stableRay)==stableRay;
}
int orbitSize()
{
int groupSize=s.elements.size();
int numFixed=0;
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
{
// fprintf(Stderr,"1a\n");
if(permutationFixesInitialIdeal(*j))numFixed++;
// fprintf(Stderr,"1b\n");
}
log2 fprintf(Stderr,"numFixed = %i\n",numFixed);
return groupSize/numFixed;
}
};
typedef list<Orbit> OrbitList;
class OrbitContainer{
public:
int theSize;
OrbitList l;
OrbitContainer():
theSize(0)
{
}
void push_back(const Orbit &orbit)
{
theSize++;
l.push_back(orbit); // breadth first
// l.push_front(orbit); // depth first
}
bool empty()
{
return theSize==0;
// return l.empty();
}
Orbit &front()
{
return *l.begin();
}
void pop_front()
{
l.pop_front();
theSize--;
}
bool containsAndMark(const PolynomialSet &g, IntegerVector const &w, const IntegerVector &v)
{
Orbit::Summary theSummary(g);
for(OrbitList::iterator i=l.begin();i!=l.end();i++)
{
log3 AsciiPrinter(Stderr)<<"loopin\n";
if(i->containsAndMark(g,theSummary,w,v))return true;
}
return false;
}
void print(FILE *f)
{
AsciiPrinter p(f);
p.printString("<\n");
for(OrbitList::const_iterator i=l.begin();i!=l.end();i++)
{
p.printVector(i->stableRay);
p.printPolynomialSet(i->representative());
p.printVectorList(i->getMarkedFacets());
}
p.printString(">\n");
}
int size()
{
return theSize;
}
};
void BreadthFirstSearch::setSubspace(IntegerVectorList const &subspacePerp_)
{
subspacePerp=subspacePerp_;
}
void BreadthFirstSearch::enumerate(const PolynomialSet &groebnerBasis)
{
int n=groebnerBasis.getRing().getNumberOfVariables();
int numberOfClosedVertices=0;
int numberOfVertices=0;
targetBeginEnumeration(groebnerBasis);
OrbitContainer active;
if(minkowski)
active.push_back(Orbit(groebnerBasis,symmetryGroup,&groebnerBasis));
else
active.push_back(Orbit(groebnerBasis,symmetryGroup));
while(!active.empty())
{
if(!subspacePerp.empty())
{
IntegerVectorList inequalities=wallInequalities(active.front().representative());
for(IntegerVectorList::const_iterator i=subspacePerp.begin();i!=subspacePerp.end();i++)
inequalities.push_front(*i);
IntegerVector equalitySet(inequalities.size());
for(int i=0;i<subspacePerp.size();i++)
equalitySet[i]=1;
if(!hasInteriorPoint(inequalities,true,&equalitySet))
{
active.pop_front();
continue;
}
}
{
static int n;
n++;
if(!(n%10))
log2 fprintf(Stderr,"%i\n",n);
}
log3 fprintf(Stderr,"Active set:\n");
log3 active.print(Stderr);
log3 fprintf(Stderr,"end active set\n");
/* fgetc(Stdin);
*/
// OrbitList::iterator currentIter=active.l.begin();
Orbit ¤t=active.front();
PolynomialSet g=current.representative();
//log0 AsciiPrinter(Stderr)<<"Processing"<<g<<"\n";
if(!targetBasis(g))break;
// IntegerVectorList normals=wallInequalities(g);
// normals=normalizedWithSumsAndDuplicatesRemoved(normals);
// AsciiPrinter(Stderr).printVectorList(normals);
IntegerVectorList normals=current.getFacets();
// log0 fprintf(stderr,"Startloop\n");
// log0 AsciiPrinter(Stderr)<<normals;
for(IntegerVectorList::iterator i=normals.begin();i!=normals.end();i++)
{
//log0 fprintf(stderr,"looping\n");
//log0 AsciiPrinter(Stderr)<<"checking"<<*i<<"\n";
// if(isFacet(normals,i))
{
if(minkowski || wallContainsPositiveVector(*i))
{
/* fprintf(Stderr,"Possible flip:\n");
AsciiPrinter(Stderr).printVector(*i);
AsciiPrinter(Stderr).printPolynomialSet(flip(g,*i));
*/
bool found=false;
const IntegerVectorList &marked=current.getMarkedFacets();
//log0 fprintf(stderr,"A\n");
for(SymmetryGroup::ElementContainer::const_iterator j=symmetryGroup.elements.begin();j!=symmetryGroup.elements.end() &&!found;j++)
if(current.permutationFixesInitialIdeal(*j))
for(IntegerVectorList::const_iterator k=marked.begin();k!=marked.end();k++)
if(dependent(*k,SymmetryGroup::compose(*j,*i))){
/* fprintf(Stderr,"Was marked with vector:");
AsciiPrinter(Stderr).printVector(*k);*/
found=true;goto terminateLoop;
}
terminateLoop:
//log0 fprintf(stderr,"B\n");
if(!found)
{
PolynomialSet neighbour=(minkowski)?flipMinkowski(g,*i):flip(g,*i);
/*fprintf(Stderr,"current:\n");
AsciiPrinter(Stderr).printPolynomialSet(g);
fprintf(Stderr,"flipped:\n");
AsciiPrinter(Stderr).printPolynomialSet(neighbour);
*/
//log0 fprintf(Stderr,"--");
IntegerVector w;
// log0 fprintf(Stderr,"A\n");
/* {
IntegerVectorList normals=wallInequalities(neighbour);
normals=normalizedWithSumsAndDuplicatesRemoved(normals);
IntegerVectorList empty;
PolyhedralCone c(normals,empty,n);
w=c.getRelativeInteriorPoint();
}*/
{
IntegerVectorList temp;
//temp.push_back(*i);
IntegerVectorList::iterator t=i;
t++;
temp.splice(temp.begin(),normals,i,t);
PolyhedralCone c(normals,temp,n);
/*AsciiPrinter P(Stderr);
P.printString("::::::\n");
P.printVectorList(normals);
P.printVectorList(temp);
c.print(&P);
P.printString("::::::\n");*/
normals.splice(t,temp);
t--;
//P.printVectorList(normals);
i=t;
w=c.getRelativeInteriorPoint();
}
//log0 fprintf(Stderr,"C\n");
//log0 AsciiPrinter(Stderr)<<w<<"\n";
//log0 active.print(Stderr);
if(!active.containsAndMark(neighbour,w,*i))
{
//log0 fprintf(Stderr,"-------------------------adding\n");
if(minkowski)
active.push_back(Orbit(neighbour,symmetryGroup,&groebnerBasis));
else
active.push_back(Orbit(neighbour,symmetryGroup));
active.containsAndMark(neighbour,w,*i);
}
//else
//log0 fprintf(Stderr,"---------------------------not adding\n");
//log0 fprintf(Stderr,"D\n");
}
else
{
// log2 fprintf(Stderr,"-- marked\n");
}
}
}
}
// fprintf(Stderr,"New active set:\n");
// active.print(Stderr);
// fprintf(Stderr,"end active set\n");
// log0 fprintf(Stderr,"Looping\n");
numberOfVertices+=current.orbitSize();
active.pop_front(); //breadth first
//active.l.erase(currentIter); //depth first
numberOfClosedVertices++;
log1 fprintf(Stderr,"Number of active vertices %i\n",active.size());
log1 fprintf(Stderr,"Number of closed vertices: %i\n",numberOfClosedVertices);
log1 fprintf(Stderr,"Number of vertices %i\n",numberOfVertices);
}
targetEndEnumeration();
}
|