File: breadthfirstsearch.cpp

package info (click to toggle)
gfan 0.5%2Bdfsg-5
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 8,296 kB
  • ctags: 5,612
  • sloc: cpp: 39,675; makefile: 453; sh: 1
file content (512 lines) | stat: -rw-r--r-- 13,666 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// To do: The facet detection in this file may not work for non-homogeneous ideals since facets pass the test even if they do not contain a positive vector. Check if this is the case and fix the bug.

#include "breadthfirstsearch.h"

#include "buchberger.h"
#include "wallideal.h"
#include "printer.h"
#include "polyhedralcone.h"
#include "polyhedralfan.h"
#include "lp.h"
#include "log.h"

#include <iostream>

bool findPermutationTakingVectorToCone(SymmetryGroup const &s, PolyhedralCone const &cone, IntegerVector const &w, IntegerVector &perm, IntegerVector const &facetNormal)
{//Assume full dimensional
  log3 AsciiPrinter(Stderr)<<"Find perm called on, w" <<w << "facet normal"<<"\n";

  IntegerVectorList inequalities=cone.getHalfSpaces();
  //  unsigned char *table=s.getByteTable();
  int n=s.sizeOfBaseSet();
  /*  if(table)
    {
      IntegerVector w2=w;
      int tableHeight=s.getByteTableHeight();
      for(int i=0;i<tableHeight;i++)
	{
	  bool inCone=true;
	  for(int j=0;j<n;j++)w2[j]=w[table[j+n*i]];
	  for(IntegerVectorList::const_iterator k=inequalities.begin();k!=inequalities.end();k++)
	    if(dot(w2,*k)<0)
	      {
		inCone=false;
		break;
	      }
	  if(inCone)
	    {
	      perm=IntegerVector(n);
	      for(int j=0;j<n;j++)perm[j]=table[j+n*i];
	      return true;
	    }
	}
    }
    else*/
  IntegerVector relInt=cone.getRelativeInteriorPoint();
log3   AsciiPrinter(Stderr)<<"Inequalities"<<inequalities<<"\n";
  log3 AsciiPrinter(Stderr)<<"Rel int"<<relInt<<"\n";
  log3 AsciiPrinter(Stderr)<<"Omega"<<w<<"\n";
  log3 AsciiPrinter(Stderr)<<"Facet normal"<< facetNormal<<"\n";
    {
      for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
	{
	  if(dotLong(relInt,SymmetryGroup::compose(*j,facetNormal))<0)
	  if(cone.contains(SymmetryGroup::compose(*j,w)))
	    {
	      perm=*j;
	      log3 AsciiPrinter(Stderr)<<"TRUE\n";
	      return true;	
	    }
	}
    }
    log3 AsciiPrinter(Stderr)<<"FALSE\n";
  return false;
}




PolyhedralCone coneFromMarkedBasis(PolynomialSet const &g)
{
  int n=g.getRing().getNumberOfVariables();
    
  //	    log0 fprintf(Stderr,"B\n");
  IntegerVectorList normals=fastNormals(wallInequalities(g));

  //  log0 AsciiPrinter(Stderr)<<normals

  //	    log0 fprintf(Stderr,"Z\n");
  
  IntegerVectorList empty;
  return PolyhedralCone(normals,empty,n);
  //   cone.findFacets();
}

BreadthFirstSearch::BreadthFirstSearch(const SymmetryGroup &symmetryGroup_, bool minkowski_):
  numberOfVertices(0),
  numberOfEdges(0),
  symmetryGroup(symmetryGroup_),
  minkowski(minkowski_)
{
}

class Orbit{
  static list<int> computePolynomialLengths(const PolynomialSet &s)
  {
    list<int> l;
    for(PolynomialSet::const_iterator i=s.begin();i!=s.end();i++)
      l.push_back(i->numberOfTerms());
    l.sort();
    return l;
  }
public:
  class Summary{
    int numberOfPolynomials;
    list<int> polynomialLengths;
    IntegerVector sortedExponentsSum;
  public:
    Summary(PolynomialSet const &g)
    {
      polynomialLengths=computePolynomialLengths(g);
      numberOfPolynomials=g.size();
      PolynomialSet p=g.markedTermIdeal();
      sortedExponentsSum=p.exponentsSum();
      sortedExponentsSum.sort();
    }
    bool operator==(Summary const &b)const
    {
      if(b.numberOfPolynomials!=numberOfPolynomials)return false;
      if(b.sortedExponentsSum!=sortedExponentsSum)return false;

      list<int>::const_iterator i=polynomialLengths.begin();
      for(list<int>::const_iterator j=b.polynomialLengths.begin();j!=b.polynomialLengths.end();j++)
	{
	  if(*j!=*i)return false;
	  i++;
	}
      return true;
    }
  };
private:
  const SymmetryGroup &s;
  PolynomialSet const *originalG;
  PolynomialSet g;
  //  PolynomialSet initialIdeal;
  IntegerVectorList markedFacets;
  PolyhedralCone cone;
  Summary theSummary;
public:
  IntegerVector stableRay;
  Orbit(const PolynomialSet &g_, const SymmetryGroup &s_, PolynomialSet const *originalG_=0):
    s(s_),
    g(g_),
    //    initialIdeal(g_.markedTermIdeal()),
    cone(g_.getRing().getNumberOfVariables()),
    theSummary(g_),
    originalG(originalG_)
    //g(g_.markedTermIdeal())    //monomialideal
  {
    g.sort_();
    //initialIdeal.sort_();//added 27.02.2008
    cone=coneFromMarkedBasis(g);
    stableRay=PolyhedralFan::stableRay(cone,&s);
    //    log0 fprintf(Stderr,"Stable ray found\n");

    if(originalG)g=PolynomialSet(g.getRing());// Forget basis if Minkowskisum
  }
  const PolynomialSet representative()const
  {
    if(originalG)// Reconstruct basis if Minkowskisum
      {
	PolynomialSet gret=*originalG;
	WeightTermOrder T(stableRay);
	gret.markAndScale(T);
	return gret;
      }
    return g;
  }
  const IntegerVectorList &getMarkedFacets()const
  {
    return markedFacets;
  }
  IntegerVectorList getFacets()const
  {
    return cone.getHalfSpaces();
  }
  void markFacet(const IntegerVector &facet)
  {
    markedFacets.push_back(facet);
  }
  bool containsAndMark(const PolynomialSet &p_, Summary const &theSummary, IntegerVector const &w, const IntegerVector &v)
  {
    //	      log0 fprintf(stderr,"containsAndMark\n");
    //PolynomialRing theRing=p_.getRing();
    //    PolynomialSet p=p_.markedTermIdeal();

    if(!(theSummary==this->theSummary))return false;
    {
      /*      PolynomialSet &g=initialIdeal;
      // simple tests
      if(p.size()!=g.size())return false;
      
      {
	list<int> P=polynomialLengths(p);
	list<int> G=polynomialLengths(g);
	list<int>::const_iterator i=P.begin();
	for(list<int>::const_iterator j=G.begin();j!=G.end();j++)
	  {
	    if(*j!=*i)return false;
	    i++;
	  }
      }
      {
	vector<int> a;
	
	//      sort(a.begin(),a.end());
	
	IntegerVector P=p.exponentsSum();
	IntegerVector G=g.exponentsSum();
	P.sort();
	G.sort();
	if(P!=G)return false;
      }
    */
    // checking all elements
      
      IntegerVector perm;
      if(findPermutationTakingVectorToCone(s,cone,w,perm,v))
	{
	  markFacet(SymmetryGroup::compose(perm,v));
	  return true;	
	}
      /*      
      for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
	{
	  if(cone.contains(SymmetryGroup::compose(*j,w)))
	    {
	      markFacet(SymmetryGroup::compose(*j,v));
	      return true;	
	    }
	    }*/
    }
    //    log0 fprintf(stderr,"ret\n");
    return false;
  }
  bool permutationFixesInitialIdeal(IntegerVector const &v)
  {
    /*    PolynomialSet G=g.markedTermIdeal();
    G.sort_();
    
    PolynomialSet q(G.getRing());
    for(PolynomialSet::const_iterator i=G.begin();i!=G.end();i++)
      {
	q.push_back(SymmetryGroup::permutePolynomial(*i,v));
      }
    q.sort_();
    return (q==G);
    */
    return SymmetryGroup::compose(v,stableRay)==stableRay;
  }
  int orbitSize()
  {
    int groupSize=s.elements.size();

    int numFixed=0;
    for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
      {
	//	fprintf(Stderr,"1a\n");
	if(permutationFixesInitialIdeal(*j))numFixed++;
	//	fprintf(Stderr,"1b\n");
      }

    log2 fprintf(Stderr,"numFixed = %i\n",numFixed);
    return groupSize/numFixed;
  }
};

typedef list<Orbit> OrbitList;

class OrbitContainer{
public:
  int theSize;
  OrbitList l;
  OrbitContainer():
    theSize(0)
  {
  }
  void push_back(const Orbit &orbit)
  {
    theSize++;
        l.push_back(orbit); // breadth first
	//    l.push_front(orbit); // depth first
  }
  bool empty()
  {
    return theSize==0;
    //    return l.empty();
  }
  Orbit &front()
  {
    return *l.begin();
  }
  void pop_front()
  {
    l.pop_front();
    theSize--;
  }
  bool containsAndMark(const PolynomialSet &g, IntegerVector const &w, const IntegerVector &v)
  {
    Orbit::Summary theSummary(g);
    for(OrbitList::iterator i=l.begin();i!=l.end();i++)
      {
	log3 AsciiPrinter(Stderr)<<"loopin\n";
	if(i->containsAndMark(g,theSummary,w,v))return true;
      }
    return false;
  }
  void print(FILE *f)
  {
    AsciiPrinter p(f);
    p.printString("<\n");
    for(OrbitList::const_iterator i=l.begin();i!=l.end();i++)
      {
	p.printVector(i->stableRay);
	p.printPolynomialSet(i->representative());
	p.printVectorList(i->getMarkedFacets());
      }
    p.printString(">\n");
  }
  int size()
  {    
    return theSize;
  }
};


void BreadthFirstSearch::setSubspace(IntegerVectorList const &subspacePerp_)
{
  subspacePerp=subspacePerp_;
}


void BreadthFirstSearch::enumerate(const PolynomialSet &groebnerBasis)
{
  int n=groebnerBasis.getRing().getNumberOfVariables();
  int numberOfClosedVertices=0;
  int numberOfVertices=0;

  targetBeginEnumeration(groebnerBasis);


  OrbitContainer active;

  if(minkowski)
    active.push_back(Orbit(groebnerBasis,symmetryGroup,&groebnerBasis));
  else
    active.push_back(Orbit(groebnerBasis,symmetryGroup));
    
  while(!active.empty())
    {
   

      if(!subspacePerp.empty())
	{
	  IntegerVectorList inequalities=wallInequalities(active.front().representative());
	  for(IntegerVectorList::const_iterator i=subspacePerp.begin();i!=subspacePerp.end();i++)
	    inequalities.push_front(*i);
	  IntegerVector equalitySet(inequalities.size());
	  for(int i=0;i<subspacePerp.size();i++)
	    equalitySet[i]=1;
	  if(!hasInteriorPoint(inequalities,true,&equalitySet))
	    {
	      active.pop_front();
	      continue;
	    }
	}

      {
	static int n;
	n++;
	if(!(n%10))
	  log2 fprintf(Stderr,"%i\n",n);
      }
       log3  fprintf(Stderr,"Active set:\n");
       log3 active.print(Stderr);
       log3 fprintf(Stderr,"end active set\n");
       /*       fgetc(Stdin);
      */
      //      OrbitList::iterator currentIter=active.l.begin();
      Orbit &current=active.front();

      PolynomialSet g=current.representative();

      //log0 AsciiPrinter(Stderr)<<"Processing"<<g<<"\n";
      

      if(!targetBasis(g))break;

      //      IntegerVectorList normals=wallInequalities(g);
      //     normals=normalizedWithSumsAndDuplicatesRemoved(normals);

      //      AsciiPrinter(Stderr).printVectorList(normals);
      
      IntegerVectorList normals=current.getFacets();

      //      log0 fprintf(stderr,"Startloop\n");

      // log0 AsciiPrinter(Stderr)<<normals;

      for(IntegerVectorList::iterator i=normals.begin();i!=normals.end();i++)
	{
	  //log0 fprintf(stderr,"looping\n");
	  
	  //log0 AsciiPrinter(Stderr)<<"checking"<<*i<<"\n";

	    //  if(isFacet(normals,i))
	    {
	      if(minkowski || wallContainsPositiveVector(*i))
		{
		  /*		  fprintf(Stderr,"Possible flip:\n");
		  AsciiPrinter(Stderr).printVector(*i);
		  AsciiPrinter(Stderr).printPolynomialSet(flip(g,*i));
		  */
		  bool found=false;
		  const IntegerVectorList &marked=current.getMarkedFacets();
		  //log0 fprintf(stderr,"A\n");
		  for(SymmetryGroup::ElementContainer::const_iterator j=symmetryGroup.elements.begin();j!=symmetryGroup.elements.end() &&!found;j++)
		    if(current.permutationFixesInitialIdeal(*j))
		      for(IntegerVectorList::const_iterator k=marked.begin();k!=marked.end();k++)
			if(dependent(*k,SymmetryGroup::compose(*j,*i))){
			  /*  fprintf(Stderr,"Was marked with vector:");
			      AsciiPrinter(Stderr).printVector(*k);*/
			  found=true;goto terminateLoop;
			}
		terminateLoop:
		  //log0 fprintf(stderr,"B\n");
		  if(!found)
		    {
		      PolynomialSet neighbour=(minkowski)?flipMinkowski(g,*i):flip(g,*i);

		      /*fprintf(Stderr,"current:\n");
		      AsciiPrinter(Stderr).printPolynomialSet(g);
		      fprintf(Stderr,"flipped:\n");
		      AsciiPrinter(Stderr).printPolynomialSet(neighbour);
		      */
		      //log0 fprintf(Stderr,"--");
		      IntegerVector w;

		      //	  log0 fprintf(Stderr,"A\n");
		      /*		      {
			IntegerVectorList normals=wallInequalities(neighbour);
			normals=normalizedWithSumsAndDuplicatesRemoved(normals);
			IntegerVectorList empty;
			PolyhedralCone c(normals,empty,n);
			w=c.getRelativeInteriorPoint();
			}*/
		      {
			IntegerVectorList temp;
			//temp.push_back(*i);
			IntegerVectorList::iterator t=i;
			t++;
			temp.splice(temp.begin(),normals,i,t);
			PolyhedralCone c(normals,temp,n);
			/*AsciiPrinter P(Stderr);
			P.printString("::::::\n");
			P.printVectorList(normals);
			P.printVectorList(temp);
			c.print(&P);
			P.printString("::::::\n");*/
			normals.splice(t,temp);
			t--;
			//P.printVectorList(normals);
			i=t;
			w=c.getRelativeInteriorPoint();

		      }
		      //log0 fprintf(Stderr,"C\n");
		      //log0 AsciiPrinter(Stderr)<<w<<"\n";
		      //log0       active.print(Stderr);


		      if(!active.containsAndMark(neighbour,w,*i))
			{
			  //log0 fprintf(Stderr,"-------------------------adding\n");
			  if(minkowski)
			    active.push_back(Orbit(neighbour,symmetryGroup,&groebnerBasis));
			  else
			    active.push_back(Orbit(neighbour,symmetryGroup));
			  active.containsAndMark(neighbour,w,*i);
			}
		      //else
			//log0 fprintf(Stderr,"---------------------------not adding\n");
		      //log0 fprintf(Stderr,"D\n");

		    }
		  else
		    {
		      // log2 fprintf(Stderr,"-- marked\n");
		    }
		}
	    }
	}
      //      fprintf(Stderr,"New active set:\n");
      //    active.print(Stderr);
      // fprintf(Stderr,"end active set\n");

      //      log0 fprintf(Stderr,"Looping\n");

      numberOfVertices+=current.orbitSize();

      active.pop_front();  //breadth first
      //active.l.erase(currentIter); //depth first

      numberOfClosedVertices++;

      log1 fprintf(Stderr,"Number of active vertices  %i\n",active.size());
      log1 fprintf(Stderr,"Number of closed vertices: %i\n",numberOfClosedVertices);
      log1 fprintf(Stderr,"Number of vertices  %i\n",numberOfVertices);

    }

  targetEndEnumeration();
}