1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// To do: The facet detection in this file may not work for non-homogeneous ideals since facets pass the test even if they do not contain a positive vector. Check if this is the case and fix the bug.
#include "breadthfirstsearch.h"
#include "buchberger.h"
#include "wallideal.h"
#include "printer.h"
#include "polyhedralcone.h"
#include "polyhedralfan.h"
#include "lp.h"
#include "log.h"
#include <iostream>
class Boundary2
{
typedef pair<IntegerVector,IntegerVector> EFirst;
typedef pair<IntegerVectorList*,IntegerVectorList::iterator> ESecond;
SymmetryGroup const &sym;
map<EFirst,ESecond > theSet;
int theSetSize;
public:
Boundary2(SymmetryGroup const &sym_):
sym(sym_),
theSetSize(0)
{
}
int size()const
{
return theSetSize;
}
pair<IntegerVector,IntegerVector> normalForm(IntegerVector const &ridge, IntegerVector const &ray)const
{
pair<IntegerVector,IntegerVector> ret;
IntegerVector perm;
ret.first=sym.orbitRepresentative(ridge,&perm);
ret.second=sym.orbitRepresentativeFixing(SymmetryGroup::compose(perm,ray),ret.first);
return ret;
}
bool containsFlip(IntegerVector const &ridge, IntegerVector const &ray, IntegerVectorList *storedInList_, IntegerVectorList::iterator listIterator_)
{
assert(ridge.size()==ray.size());
EFirst p=normalForm(ridge,ray);
if(theSet.count(p)==1)
{
theSet[p].first->erase(theSet[p].second);
theSet.erase(p);
theSetSize--;
return true;
}
theSet[p]=ESecond(storedInList_,listIterator_);
theSetSize++;
return false;
}
void removeDuplicates(IntegerVector const &ridge, IntegerVectorList &rays)const
{
IntegerVectorList ret;
set<IntegerVector> representatives;
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
{
IntegerVector rep=sym.orbitRepresentativeFixing(*i,ridge);
if(representatives.count(rep)==0)
{
representatives.insert(rep);
ret.push_back(*i);
}
}
rays=ret;
}
void print()const
{
cerr<< "Boundary" <<endl;
for(map<EFirst,ESecond>::const_iterator i=theSet.begin();i!=theSet.end();i++)
{
AsciiPrinter P(Stderr);
P << i->first.first << i->first.second;
cerr << endl;
}
cerr<<endl<<endl;
}
};
struct pathStepFacet
{
IntegerVectorList ridges;
};
static void checkSameLeadingTerms(PolynomialSet const &a, PolynomialSet const &b)
{
assert(a.size()==b.size());
PolynomialSet::const_iterator A=a.begin();
for(PolynomialSet::const_iterator B=b.begin();B!=b.end();B++,A++)
assert(A->getMarked().m.exponent==B->getMarked().m.exponent);
}
static void printMarkedTermIdeal(PolynomialSet const &g, string const &s)
{
PolynomialSet a=g.markedTermIdeal();
PolynomialSet b=a;
minimize(&b);
cerr << "Printing marked termideal. "<<s<< "size:"<<g.size()<<","<<a.size()<<","<<b.size()<<endl;
AsciiPrinter P(Stderr);
cerr << "initial ideal:";
P<<a;
cerr << "minimized:";
P<<b;
assert(a.size()==b.size());
}
void printStack(list<pathStepFacet> const &facetStack)
{
list<pathStepFacet>::const_iterator i=facetStack.begin();
AsciiPrinter P(Stderr);
cerr<<"STACK:"<<endl;
do
{
cerr<<"FACET:"<<endl;
P<<i->ridges;
cerr<<endl;
i++;
}
while(i!=facetStack.end());
}
void coneChangeDebugger(PolynomialSet coneGroebnerBasis, PolynomialSet idealGroebnerBasis, IntegerVectorList const &ridges, IntegerVectorList const &rays)
{
AsciiPrinter P(Stderr);
P<<coneGroebnerBasis<<idealGroebnerBasis;
IntegerVectorList::const_iterator i=ridges.begin();
for(IntegerVectorList::const_iterator j=rays.begin();j!=rays.end();j++,i++)
{
changeCone(coneGroebnerBasis, idealGroebnerBasis,*i,*j);
P<<"NEW CONEGB:"<<coneGroebnerBasis;
P<<"NEW IDEALGB:"<<idealGroebnerBasis;
}
}
BreadthFirstSearch::BreadthFirstSearch(const SymmetryGroup &symmetryGroup_, bool minkowski_):
numberOfVertices(0),
numberOfEdges(0),
symmetryGroup(symmetryGroup_),
minkowski(minkowski_)
{
}
void BreadthFirstSearch::setSubspace(IntegerVectorList const &subspacePerp_)
{
subspacePerp=subspacePerp_;
}
void BreadthFirstSearch::enumerate(const PolynomialSet &groebnerBasis)
{
int n=groebnerBasis.getRing().getNumberOfVariables();
targetBeginEnumeration(groebnerBasis);
PolynomialSet current=groebnerBasis;
SymmetryGroup localSymmetryGroup(n);
if(!symmetryGroup)symmetryGroup=&localSymmetryGroup;
Boundary boundary(*symmetryGroup);
list<pathStepFacet> facetStack;
int numberOfCompletedFacets=0;
int numberOfCompletedRidges=0;
int stackSize=0;
PolyhedralCone currentFacet(n);
IntegerVector facetUniqueVector;
goto entry;
while(1)
{
if(!facetStack.front().ridges.empty())
{
IntegerVector normal=facetStack.front().ridges.front();
current=(minkowski)?flipMinkowski(g,normal):flip(g,normal);
//P<<"RIDGE"<<facetStack.front().ridges.front()<<"\nRAYS"<<rays;
cerr<<"5";
boundary.removeDuplicates(top.parentRidge,rays);
cerr<<"6";
ridgeStack.push_front(top);stackSize++;
IntegerVector ridgeRidgeRidge=facetStack.front().ridges.front();
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
{
ridgeStack.front().rays.push_front(*i);
if(boundary.containsFlip(ridgeRidgeRidge,*i,&ridgeStack.front().rays,ridgeStack.front().rays.begin()))
ridgeStack.front().rays.pop_front();
}
cerr<<"7";
numberOfCompletedRidges++;
}
else
{
facetStack.pop_front();stackSize--;
if(facetStack.empty())break;
}
entry:
log1 fprintf(Stderr,"\n-------------------------------------\n");
log1 fprintf(Stderr,"Boundary edges in bipartite graph: %i, Completed ridges: %i, Completed facets: %i, Recursion depth:%i\n",boundary.size(),numberOfCompletedRidges,numberOfCompletedFacets,stackSize);
log1 fprintf(Stderr,"-------------------------------------\n");
currentFacet=PolyhedralCone(fastNormals(wallInequalities(current)),n);
cerr<<"A";
currentFacet.canonicalize();
cerr<<"B";
if(!targetBasis(g))break;
facetUniqueVector=currentFacet.getUniquePoint();
IntegerVectorList facetNormals=currentFacet.getHalfSpaces();
pathStepFacet stepFacet;
IntegerVectorList ridges;
cerr<<"C";
for(IntegerVectorList::const_iterator i=facetNormals.begin();i!=facetNormals.end();i++)
{
ridges.push_back(ridgeCone.normalized(*i));
}
cerr<<"D";
IntegerVector temp(n);
boundary.removeDuplicates(temp,ridges);
cerr<<"E";
facetStack.push_front(stepFacet);stackSize++;
for(IntegerVectorList::const_iterator i=ridges.begin();i!=ridges.end();i++)
{
PolyhedralCone rayCone=currentFacet.link(*i);
rayCone.canonicalize();
IntegerVector rayUniqueVector=rayCone.getUniquePoint();
facetStack.front().ridges.push_front(*i);
if(boundary.containsFlip(*i,rayUniqueVector,&facetStack.front().ridges,facetStack.front().ridges.begin()))
facetStack.front().ridges.pop_front();
}
cerr<<"F";
numberOfCompletedFacets++;
}
else
{
changeCone(coneGroebnerBasis, idealGroebnerBasis, ridgeStack.front().parentRidge,ridgeStack.front().parentRay);
currentFacet=PolyhedralCone(fastNormals(wallInequalities(idealGroebnerBasis)),wallInequalities(coneGroebnerBasis),n);
currentFacet.canonicalize();
ridgeStack.pop_front();stackSize--;
cerr<<"BACK"<<endl;
for(IntegerVectorList::const_iterator i=facetStack.front().ridges.begin();i!=facetStack.front().ridges.end();i++)
{
assert(idealGroebnerBasis.containsInClosedGroebnerCone(*i));
assert(coneGroebnerBasis.isHomogeneous(*i));
}
}
}
}
}
targetEndEnumeration();
}
|