File: dimension.cpp

package info (click to toggle)
gfan 0.5%2Bdfsg-5
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 8,296 kB
  • ctags: 5,612
  • sloc: cpp: 39,675; makefile: 453; sh: 1
file content (148 lines) | stat: -rw-r--r-- 3,516 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include "dimension.h"
#include "buchberger.h"
#include "log.h"
#include "printer.h"

PolynomialSet radicalOfMonomialIdeal(PolynomialSet const &monomialGenerators)
{
  PolynomialRing theRing=monomialGenerators.getRing();
  PolynomialSet temp=monomialGenerators;

  temp.markAndScale(LexicographicTermOrder()); //just to make sure that some term is marked

  PolynomialSet ret(theRing);
  for(PolynomialSet::const_iterator i=temp.begin();i!=temp.end();i++)
    {
      IntegerVector e=i->getMarked().m.exponent;
      e=e.supportVector();
      ret.push_back(Polynomial(Term(i->getMarked().c,Monomial(theRing,e))));
    }
  return ret;
}

static bool increase(IntegerVector &v, int &numberOfOnes)
{
  int i=0;
  while(i<v.size() && v[i]==1)
    {
      v[i]=0;
      numberOfOnes--;
      i++;
    }
  if(i==v.size())return false;
  v[i]=1;
  numberOfOnes++;
  return true;
}


static void rek(IntegerVector &ones, IntegerVector &zeros, int nOnes, int nZeros, IntegerVectorList const &vectors, int &best)
{
  if(nOnes>best)best=nOnes;
  if(ones.size()-nZeros<best)return;
  if(nOnes+nZeros==ones.size())return;


  log3
    {
      fprintf(Stderr,"Ones:\n");
      AsciiPrinter(Stderr).printVector(ones);
      fprintf(Stderr,"Zeros:\n");
      AsciiPrinter(Stderr).printVector(zeros);

      AsciiPrinter(Stderr).printVectorList(vectors);
    }

  int index=0;
  for(int i=0;i<ones.size();i++,index++)
    if((!ones[i])&&(!zeros[i]))break;

  assert(index<ones.size());

  ones[index]=1;
  bool good=true;
  for(IntegerVectorList::const_iterator i=vectors.begin();i!=vectors.end();i++)
    if(i->divides(ones))
      {
	good=false;
	break;
      }

  if(good)
    {
      rek(ones,zeros,nOnes+1,nZeros,vectors,best);
    }
  ones[index]=0;

  IntegerVectorList vectorsSubset;

  for(IntegerVectorList::const_iterator i=vectors.begin();i!=vectors.end();i++)
    {
      if((*i)[index]==0)vectorsSubset.push_back(*i);
    }
  zeros[index]=1;
  rek(ones,zeros,nOnes,nZeros+1,vectorsSubset,best);
  //  rek(ones,zeros,nOnes,nZeros+1,vectors,best);
  zeros[index]=0;
}


int krullDimensionOfMonomialIdeal(PolynomialSet const &monomialGenerators)
{
  PolynomialSet temp=radicalOfMonomialIdeal(monomialGenerators);
  minimize(&temp);
  IntegerVectorList vectors;
  for(PolynomialSet::const_iterator i=temp.begin();i!=temp.end();i++)
    vectors.push_back(i->getMarked().m.exponent);

  int best=0;
  
  int n=monomialGenerators.getRing().getNumberOfVariables();
  IntegerVector zeros(n);
  IntegerVector ones(n);

  rek(ones,zeros,0,0,vectors,best);

  return best;
}

/*int krullDimensionOfMonomialIdeal(PolynomialSet const &monomialGenerators)
{
  PolynomialSet temp=radicalOfMonomialIdeal(monomialGenerators);
  minimize(&temp);
  IntegerVectorList vectors;
  for(PolynomialSet::const_iterator i=temp.begin();i!=temp.end();i++)
    vectors.push_back(i->getMarked().m.exponent);

  assert(!vectors.empty());
  int n=vectors.begin()->size();
  IntegerVector subset(n);
  int numberOfOnes=0;
  int dimension=0;

  do
    {
      //  AsciiPrinter(Stderr).printVector(subset);

      if(numberOfOnes>dimension)
	{
	  bool ok=true;
	  for(IntegerVectorList::const_iterator i=vectors.begin();i!=vectors.end();i++)
	    if(i->divides(subset))
	      {
		ok=false;
		break;
	      }
	  if(ok)
	    dimension=numberOfOnes;
	}
    }
  while(increase(subset,numberOfOnes));

  return dimension;
}
*/
int krullDimension(PolynomialSet const &groebnerBasis)
{
  return krullDimensionOfMonomialIdeal(groebnerBasis.markedTermIdeal());
}