1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#include "dimension.h"
#include "buchberger.h"
#include "log.h"
#include "printer.h"
PolynomialSet radicalOfMonomialIdeal(PolynomialSet const &monomialGenerators)
{
PolynomialRing theRing=monomialGenerators.getRing();
PolynomialSet temp=monomialGenerators;
temp.markAndScale(LexicographicTermOrder()); //just to make sure that some term is marked
PolynomialSet ret(theRing);
for(PolynomialSet::const_iterator i=temp.begin();i!=temp.end();i++)
{
IntegerVector e=i->getMarked().m.exponent;
e=e.supportVector();
ret.push_back(Polynomial(Term(i->getMarked().c,Monomial(theRing,e))));
}
return ret;
}
static bool increase(IntegerVector &v, int &numberOfOnes)
{
int i=0;
while(i<v.size() && v[i]==1)
{
v[i]=0;
numberOfOnes--;
i++;
}
if(i==v.size())return false;
v[i]=1;
numberOfOnes++;
return true;
}
static void rek(IntegerVector &ones, IntegerVector &zeros, int nOnes, int nZeros, IntegerVectorList const &vectors, int &best)
{
if(nOnes>best)best=nOnes;
if(ones.size()-nZeros<best)return;
if(nOnes+nZeros==ones.size())return;
log3
{
fprintf(Stderr,"Ones:\n");
AsciiPrinter(Stderr).printVector(ones);
fprintf(Stderr,"Zeros:\n");
AsciiPrinter(Stderr).printVector(zeros);
AsciiPrinter(Stderr).printVectorList(vectors);
}
int index=0;
for(int i=0;i<ones.size();i++,index++)
if((!ones[i])&&(!zeros[i]))break;
assert(index<ones.size());
ones[index]=1;
bool good=true;
for(IntegerVectorList::const_iterator i=vectors.begin();i!=vectors.end();i++)
if(i->divides(ones))
{
good=false;
break;
}
if(good)
{
rek(ones,zeros,nOnes+1,nZeros,vectors,best);
}
ones[index]=0;
IntegerVectorList vectorsSubset;
for(IntegerVectorList::const_iterator i=vectors.begin();i!=vectors.end();i++)
{
if((*i)[index]==0)vectorsSubset.push_back(*i);
}
zeros[index]=1;
rek(ones,zeros,nOnes,nZeros+1,vectorsSubset,best);
// rek(ones,zeros,nOnes,nZeros+1,vectors,best);
zeros[index]=0;
}
int krullDimensionOfMonomialIdeal(PolynomialSet const &monomialGenerators)
{
PolynomialSet temp=radicalOfMonomialIdeal(monomialGenerators);
minimize(&temp);
IntegerVectorList vectors;
for(PolynomialSet::const_iterator i=temp.begin();i!=temp.end();i++)
vectors.push_back(i->getMarked().m.exponent);
int best=0;
int n=monomialGenerators.getRing().getNumberOfVariables();
IntegerVector zeros(n);
IntegerVector ones(n);
rek(ones,zeros,0,0,vectors,best);
return best;
}
/*int krullDimensionOfMonomialIdeal(PolynomialSet const &monomialGenerators)
{
PolynomialSet temp=radicalOfMonomialIdeal(monomialGenerators);
minimize(&temp);
IntegerVectorList vectors;
for(PolynomialSet::const_iterator i=temp.begin();i!=temp.end();i++)
vectors.push_back(i->getMarked().m.exponent);
assert(!vectors.empty());
int n=vectors.begin()->size();
IntegerVector subset(n);
int numberOfOnes=0;
int dimension=0;
do
{
// AsciiPrinter(Stderr).printVector(subset);
if(numberOfOnes>dimension)
{
bool ok=true;
for(IntegerVectorList::const_iterator i=vectors.begin();i!=vectors.end();i++)
if(i->divides(subset))
{
ok=false;
break;
}
if(ok)
dimension=numberOfOnes;
}
}
while(increase(subset,numberOfOnes));
return dimension;
}
*/
int krullDimension(PolynomialSet const &groebnerBasis)
{
return krullDimensionOfMonomialIdeal(groebnerBasis.markedTermIdeal());
}
|