1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
#include "division.h"
#include "printer.h"
#include "wallideal.h"
#include "lp.h"
#include "timer.h"
static Timer divisionTimer("Division",1);
static Timer divisionTimer1("Division1",1);
static Timer divisionTimer2("Division2",1);
static Timer divisionTimer3("Division3",1);
static Timer divisionTimer4("Division4",1);
Polynomial division1(Polynomial p, PolynomialSet const &l, TermOrder const &termOrder, PolynomialSet *q);
typedef map<Monomial,Polynomial,TermMapCompare> ReductionCache;
Polynomial division(Polynomial p, PolynomialSet const &l, TermOrder const &termOrder, PolynomialSet *q)
{
return division1(p,l,termOrder,q);
}
Polynomial smartDivision(Polynomial p, PolynomialSet l, TermOrder const &termOrder)
{
Polynomial r(p.getRing());
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
{
r+=division(Term(i->second,Monomial(p.getRing(),i->first.exponent)),l,termOrder);
}
return r;
}
IntegerVector termorderWeight(PolynomialSet const &g)
{
IntegerVector ret=relativeInteriorPoint(g.getRing().getNumberOfVariables(),fastNormals(wallInequalities(g)),0);
// fprintf(stderr,"WEIGHT");
//AsciiPrinter(Stderr).printVector(ret);
//fprintf(stderr,"\n");
return ret;
}
Polynomial division1(Polynomial p, PolynomialSet const &l, TermOrder const &termOrder, PolynomialSet *q)
{
PolynomialRing theRing=p.getRing();
TimerScope ts(&divisionTimer);
// WeightReverseLexicographicTermOrder termOrder2(termorderWeight(l));//REMOVE ME ?? JAN 2009
if(q)
{
*q=PolynomialSet(theRing);
for(PolynomialSet::const_iterator i=l.begin();i!=l.end();i++)
q->push_back(Polynomial(p.getRing()));
}
Polynomial r(p.getRing());
while(!p.isZero())
{
// AsciiPrinter(Stderr).printPolynomial(p);
// fprintf(Stderr,"Number Of terms: %i\n",p.terms.size());
p.mark(termOrder);
Term initial=p.getMarked();
PolynomialSet::const_iterator i;
PolynomialSet::iterator j;
if(q)j=q->begin();
{
TimerScope ts(&divisionTimer2);
for(i=l.begin();i!=l.end();i++)
{
if(i->getMarked().m.exponent.divides(initial.m.exponent))break;
if(q)j++;
}
}
{
TimerScope ts(&divisionTimer3);
if(i!=l.end())
{
Term s(-initial.c*i->getMarked().c.inverse(),Monomial(p.getRing(),initial.m.exponent-i->getMarked().m.exponent));
p.madd(s,*i);
if(q)*j+=Polynomial(s);
}
else
{
TimerScope ts(&divisionTimer4);
p-=initial;
r+=initial;
}
}
}
return r;
}
#if 0
Polynomial divisionLift(Polynomial p, PolynomialSet l, PolynomialSet lLift, TermOrder const &termOrder, bool noMarking)
{
Polynomial lift(p.getRing());
Polynomial r(p.getRing());
Monomial marked=p.getMarked().m;
for(PolynomialSet::iterator i=l.begin();i!=l.end();i++)
i->scaleMarkedCoefficientToOne();
while(!p.isZero())
{
p.mark(termOrder);
/* fprintf(Stderr,"Polynomial:\n");
AsciiPrinter(Stderr).printPolynomial(p);
fprintf(Stderr,"\n");
fprintf(Stderr,"Remainder:\n");
AsciiPrinter(Stderr).printPolynomial(r);
fprintf(Stderr,"\n");
*/
Term initial=p.getMarked();
PolynomialSet::const_iterator i;
PolynomialSet::const_iterator iLift=lLift.begin();
for(i=l.begin();i!=l.end();i++)
{
if(i->getMarked().m.exponent.divides(initial.m.exponent))break;
iLift++;
}
if(i!=l.end())
{
Term s(initial.c,Monomial(p.getRing(),initial.m.exponent-i->getMarked().m.exponent));
p-=((*i)*s);
// lift+=(*iLift)*s;
lift.madd(s,*iLift);
}
else
{
p-=initial;
r+=initial;
}
}
if(!noMarking)lift.mark(marked);
return lift;
}
#else
Polynomial divisionLift(Polynomial p, PolynomialSet l, PolynomialSet lLift, TermOrder const &termOrder, bool noMarking)
{
Polynomial lift(p.getRing());
Polynomial r(p.getRing());
Monomial marked=p.getMarked().m;
for(PolynomialSet::iterator i=l.begin();i!=l.end();i++)
i->scaleMarkedCoefficientToOne();
PolynomialSet coefficientPolynomials(p.getRing());
for(PolynomialSet::iterator i=l.begin();i!=l.end();i++)coefficientPolynomials.push_back(p.getRing());
while(!p.isZero())
{
p.mark(termOrder);
/* fprintf(Stderr,"Polynomial:\n");
AsciiPrinter(Stderr).printPolynomial(p);
fprintf(Stderr,"\n");
fprintf(Stderr,"Remainder:\n");
AsciiPrinter(Stderr).printPolynomial(r);
fprintf(Stderr,"\n");
*/
Term initial=p.getMarked();
PolynomialSet::const_iterator i;
PolynomialSet::const_iterator iLift=lLift.begin();
PolynomialSet::iterator iCoeff=coefficientPolynomials.begin();
for(i=l.begin();i!=l.end();i++)
{
if(i->getMarked().m.exponent.divides(initial.m.exponent))break;
iLift++;
iCoeff++;
}
if(i!=l.end())
{
Term s(initial.c,Monomial(p.getRing(),initial.m.exponent-i->getMarked().m.exponent));
p-=((*i)*s);
// lift+=(*iLift)*s;
// lift.madd(s,*iLift);
*iCoeff+=s;
}
else
{
p-=initial;
r+=initial;
}
}
PolynomialSet::const_iterator iCoeff=coefficientPolynomials.begin();
for(PolynomialSet::const_iterator i=lLift.begin();i!=lLift.end();i++)
{
lift+=*i* *iCoeff;
iCoeff++;
}
if(!noMarking)lift.mark(marked);
return lift;
}
#endif
bool isIdealContainedInIdeal(PolynomialSet const &generators, PolynomialSet const &groebnerBasis)
{
for(PolynomialSet::const_iterator i=generators.begin();i!=generators.end();i++)
{
// if(!division(*i,groebnerBasis,LexicographicTermOrder()).isZero())return false;
if(!division(*i,groebnerBasis,StandardGradedLexicographicTermOrder()).isZero())return false;
// fprintf(Stderr,".\n");
}
return true;
}
bool areIdealsEqual(PolynomialSet const &groebnerBasis1, PolynomialSet const &groebnerBasis2)
{
return isIdealContainedInIdeal(groebnerBasis1,groebnerBasis2)
&& isIdealContainedInIdeal(groebnerBasis2,groebnerBasis1);
}
|