File: lp.cpp

package info (click to toggle)
gfan 0.5%2Bdfsg-5
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 8,296 kB
  • ctags: 5,612
  • sloc: cpp: 39,675; makefile: 453; sh: 1
file content (302 lines) | stat: -rw-r--r-- 7,717 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include "lp.h"

#include <assert.h>
#include <math.h>
#include <string>

#include "linalg.h"
#include "timer.h"

static Timer lpTimer("LP",100);
static Timer lpTimer2("LP2",100);
static Timer lpTimer3("LP3 - rank of matrix",100);

LpSolver *LpSolver::list;


LpSolver::LpSolver()
{
   next=list;
   list=this;
}


LpSolver *LpSolver::find(const char *name)
{
   LpSolver *l=list;
   while(l)
      {
         if(std::string(l->name())==std::string(name))break;
         l=l->next;
      }
   return l;
}


void LpSolver::printList(FILE *f)
{
   fprintf(f,"List of linked LP solvers:\n");
   LpSolver *l=list;
   while(l)
      {
         fprintf(f," %s\n",l->name());
         l=l->next;
      }
}


bool LpSolver::interiorPoint(const IntegerVectorList &g, IntegerVector &result, bool strictlyPositive, IntegerVector const *equalitySet)
{
  fprintf(stderr,"interiorPoint method not supported in \"%s\" LP class\n",name());
  assert(0);

  return false;
}


bool LpSolver::hasInteriorPoint(const IntegerVectorList &g, bool strictlyPositive, IntegerVector const *equalitySet)
{
  fprintf(stderr,"hasInteriorPoint method not supported in \"%s\" LP class\n",name());
  assert(0);
}


IntegerVectorList::const_iterator LpSolver::shoot(const IntegerVectorList &g)
{
  fprintf(stderr,"shoot method not supported in \"%s\" LP class\n",name());
  assert(0);
  return g.begin();
}



bool LpSolver::positiveVectorInKernel(const IntegerVectorList &g, IntegerVector *result)
{
  fprintf(stderr,"positiveVectorInKernel method not supported in \"%s\" LP class\n",name());
  assert(0);
  return false;
}


int LpSolver::rankOfMatrix(const IntegerVectorList &g)
{
  fprintf(stderr,"rankOfMatrix method not supported in \"%s\" LP class\n",name());
  assert(0);
  return 0;
}


IntegerVectorList LpSolver::extremeRaysInequalityIndices(const IntegerVectorList &inequalityList)
{
  fprintf(stderr,"extremeRaysInequalityIndices not supported in \"%s\" LP class\n",name());
  assert(0);
  return IntegerVectorList();
}


void LpSolver::removeRedundantRows(IntegerVectorList *inequalities, IntegerVectorList *equalities, bool removeInequalityRedundancies)
{
  fprintf(stderr,"removeRedundantRows method not supported in \"%s\" LP class\n",name());
  assert(0);
}

IntegerVector LpSolver::relativeInteriorPoint(int n, const IntegerVectorList &g, IntegerVector const *equalitySet)
{
  fprintf(stderr,"relativeInteriorPoint method not supported in \"%s\" LP class\n",name());
  assert(0);
  return IntegerVector();
}

void LpSolver::dual(int n, const IntegerVectorList &inequalities, const IntegerVectorList &equations, IntegerVectorList *dualInequalities, IntegerVectorList *dualEquations)
{
  fprintf(stderr,"dual method not supported in \"%s\" LP class\n",name());
  assert(0);
}


bool LpSolver::hasHomogeneousSolution(int n, const IntegerVectorList &inequalities, const IntegerVectorList &equations)
{
  fprintf(stderr,"hasHomogeneousSolution method not supported in \"%s\" LP class\n",name());
  assert(0);
}

static LpSolver *soplex,*soplexCddGmp,*huber,*cdd,*cddgmp,*default_;
static bool initialized;


bool lpSetSolver(const char *name)
{
  soplexCddGmp=LpSolver::find("SoPlexCddGmp");
  soplex=LpSolver::find("SoPlex");
  huber=LpSolver::find("Huber's");
  cdd=LpSolver::find("cdd");
  cddgmp=LpSolver::find("cddgmp");
  LpSolver *selected=LpSolver::find(name);
  default_=huber;
  if(soplex)default_=soplex;
  if(cdd)default_=cdd;
  if(cddgmp)default_=cddgmp;
  if(soplexCddGmp)default_=soplexCddGmp;
  if(selected)default_=selected;
  initialized=true;
  assert(default_);
  fprintf(stderr,"LP algorithm being used: \"%s\".\n",default_->name()); //TODO: change to debug printer
  //if(default_==soplexCddGmp)fprintf(stderr,"USING SoPlexCddGmp\n");

  return selected;
}


static void LpInit()
{
   if(!initialized)
      {
	lpSetSolver("");
      }
}


bool isFacet(const IntegerVectorList &g, IntegerVectorList::const_iterator i)
{
  TimerScope ts(&lpTimer);
  LpInit();

  return default_->isFacet(g,i);
}


bool interiorPoint(const IntegerVectorList &g, IntegerVector &result, bool strictlyPositive, IntegerVector const *equalitySet)
{
  LpInit();
  return default_->interiorPoint(g,result,strictlyPositive,equalitySet);
}


bool hasInteriorPoint(const IntegerVectorList &g, bool strictlyPositive, IntegerVector const *equalitySet)
{
  LpInit();
  return default_->hasInteriorPoint(g,strictlyPositive, equalitySet);
}


IntegerVectorList::const_iterator shootRay(const IntegerVectorList &g)
{
  TimerScope ts(&lpTimer2);
  LpInit();

  if(g.empty())return g.end();

  return default_->shoot(g);
}


bool positiveVectorInKernel(const IntegerVectorList &g, IntegerVector *result)
{
  LpInit();

  return default_->positiveVectorInKernel(g,result);
}


int rankOfMatrix(const IntegerVectorList &g)
{
  TimerScope ts(&lpTimer3);
  LpInit();

  return default_->rankOfMatrix(g);
}


IntegerVectorList extremeRaysInequalityIndices(const IntegerVectorList &inequalityList)
{
  /* If cone is simplicial, then the rays are easy to find...*/
  if(rankOfMatrix(inequalityList)==inequalityList.size())
    {
      IntegerVectorList ret;
      int m=inequalityList.size();
      for(int i=0;i<m;i++)
	{
	  IntegerVector v(m-1);
	  for(int j=0;j<i;j++)
	    v[j]=j;
	  for(int j=i+1;j<m;j++)
	    v[j-1]=j;
	  ret.push_back(v);
	}
      return ret;
    }


  LpInit();

  return default_->extremeRaysInequalityIndices(inequalityList);
}


void removeRedundantRows(IntegerVectorList *inequalities, IntegerVectorList *equalities, bool removeInequalityRedundancies)
{
  LpInit();

  return default_->removeRedundantRows(inequalities,equalities,removeInequalityRedundancies);
}


IntegerVector relativeInteriorPoint(int n, const IntegerVectorList &g, IntegerVector const *equalitySet)
{
  LpInit();

  return default_->relativeInteriorPoint(n,g,equalitySet);
}


void dual(int n, const IntegerVectorList &inequalities, const IntegerVectorList &equations, IntegerVectorList *dualInequalities, IntegerVectorList *dualEquations)
{
  LpInit();

  return default_->dual(n,inequalities,equations,dualInequalities,dualEquations);
}


bool hasHomogeneousSolution(int n, const IntegerVectorList &inequalities, const IntegerVectorList &equations)
{
  LpInit();

  for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
    if(i->size()!=n)
      {
	AsciiPrinter(Stderr) << "Inequality length does not match. n="<<n<<" *i="<<*i<<"\n";
	assert(0);
      }
  for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)
    if(i->size()!=n)
      {
	AsciiPrinter(Stderr) << "Equation length does not match. n="<<n<<" *i="<<*i<<"\n";
	assert(0);
      }

  return default_->hasHomogeneousSolution(n, inequalities, equations);
}


bool isInNonNegativeSpan(IntegerVector const &v, IntegerVectorList const &rays, IntegerVectorList const &linealitySpace)
{
  int n=v.size();
  /*
  Solve Ax>=0 with A being:
    0| 1  | 000
    0|  1 | 000
    0|   1| 000
   -v| rrr| lll\
   -v| aaa| iii \ Added as
   -v| yyy| nnn / equations
   -v| sss| eee/
   */

  FieldMatrix A1=combineLeftRight(combineLeftRight(FieldMatrix(Q,rays.size(),1),FieldMatrix::identity(Q,rays.size())),FieldMatrix(Q,rays.size(),linealitySpace.size()));
  FieldMatrix temp=FieldMatrix(Q,1,n);
  temp[0]=integerVectorToFieldVector(-v,Q);
  FieldMatrix A2=combineLeftRight(combineLeftRight(temp.transposed(),integerMatrixToFieldMatrix(rowsToIntegerMatrix(rays,n),Q).transposed()),
				  integerMatrixToFieldMatrix(rowsToIntegerMatrix(linealitySpace,n),Q).transposed());

  return hasHomogeneousSolution(1+rays.size()+linealitySpace.size(),fieldMatrixToIntegerMatrixPrimitive(A1).getRows(),fieldMatrixToIntegerMatrixPrimitive(A2).getRows());
}