1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#include "saturation.h"
#include "matrix.h"
#include "multiplicity.h"
#include "buchberger.h"
#include "division.h"
#include "tropical.h"
#include "printer.h"
/*
#include "substitution.h"
PolynomialSet colonIdeal(PolynomialSet const &ideal, polynomial f)
{
int n=ideal.numberOfVariablesInRing();
IntegerMatrix mat(n+1,n);
for(int i=0;i<n;i++)mat[i][i]=1;
PolynomialSet ret=multiplicativeChange(mat,ideal);
f=multiplicativeChange(mat,f);
f*=Monomial(IntegerVector::standardVector(n+1,n));
ret.push_back();
}
*/
FieldElement getFieldElement(PolynomialSet const &s)
{
FieldElement a;
for(PolynomialSet::const_iterator i=s.begin();i!=s.end();i++)
for(TermMap::const_iterator j=i->terms.begin();j!=i->terms.end();j++)
return j->second;
assert(0);
return a;
}
/*
* This procedure does not work
*/
static PolynomialSet singleSaturation(PolynomialSet const &s)//TO DO: call idealIntersection to do the intersection
{
assert(0);
PolynomialRing theRing=s.getRing();
int n=s.numberOfVariablesInRing();
FieldElement one=getFieldElement(s).one();
// add a variable
// PolynomialSet s2=s;s2.changeNumberOfVariables(n+1);
IntegerVector temp(theRing.getNumberOfVariables());
PolynomialSet s2=s.homogenization(theRing.withVariablesAppended("T"),&temp);
/* IntegerMatrix mat(n+1,n);
for(int i=0;i<n;i++)mat[i][i]=1;
PolynomialSet s2=multiplicativeChangeInv(s,mat);*/
// multiply by (1-t)
Monomial m(s2.getRing(),IntegerVector::standardVector(n+1,n));
PolynomialSet s3(s2.getRing());
for(PolynomialSet::const_iterator i=s2.begin();i!=s2.end();i++)
{
s3.push_back(*i-((*i)*m));
}
for(int i=0;i<n;i++)
s3.push_back(Polynomial(Term(one,Monomial(s3.getRing(),IntegerVector::standardVector(n+1,n)+IntegerVector::standardVector(n+1,i)))));
// WeightReverseLexicographicTermOrder T(IntegerVector::standardVector(n+1,n));
LexicographicTermOrder T(n);
buchberger(&s3,T);
PolynomialSet s4=s3.polynomialRingIntersection(theRing);
s4.saturate();
return s4;
}
/*
*
*/
PolynomialSet nonHomogeneousSaturation(PolynomialSet const &s)
{
PolynomialSet s2=s.homogenization(s.getRing().withVariablesAppended("T"));
PolynomialSet s3=saturatedIdeal(s2);
PolynomialSet s4=s3.deHomogenizationInSameRing();
return s4.polynomialRingIntersection(s.getRing());
/* PolynomialRing theRing=s.getRing();
StandardGradedLexicographicTermOrder T;
PolynomialSet s1=s;
PolynomialSet s2(theRing);
buchberger(&s1,T);
s1.sort_();
do
{
s2=s1;
s1=singleSaturation(s2);
buchberger(&s1,T);
s1.sort_();
}
while(!s1.isEqualTo(s2));
return s1;
*/
}
PolynomialSet idealIntersection(PolynomialSet const &a, PolynomialSet const &b)
{
PolynomialRing theRing=a.getRing();
int n=a.numberOfVariablesInRing();
assert(n==b.numberOfVariablesInRing());
FieldElement one=getFieldElement(a).one();
// add a variable
PolynomialRing theRing2=theRing.withVariablesAppended("T");
IntegerVector temp(theRing.getNumberOfVariables());
PolynomialSet A=a.homogenization(theRing2,&temp);
PolynomialSet B=b.homogenization(theRing2,&temp);
// PolynomialSet A=a;A.changeNumberOfVariables(n+1);
// PolynomialSet B=b;B.changeNumberOfVariables(n+1);
// multiply by (1-t)
Monomial m(theRing2,IntegerVector::standardVector(n+1,n));
PolynomialSet C(theRing2);
for(PolynomialSet::const_iterator i=B.begin();i!=B.end();i++)
C.push_back(*i-((*i)*m));
for(PolynomialSet::const_iterator i=A.begin();i!=A.end();i++)
C.push_back(((*i)*m));
LexicographicTermOrder T(n);
buchberger(&C,T);
return C.polynomialRingIntersection(theRing);
}
|