1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#include "singularconversion.h"
#include "polynomialring.h"
#include "polynomial.h"
#include "field_rationals.h"
#include "buchberger.h"
#include "division.h"
#include "printer.h"
#include "log.h"
#include <iostream>
void singularBuchberger(PolynomialSet *g, TermOrder const &termOrder)
{
ring R=singularRing(g->getRing());
ideal i=singularPolynomialSet(*g);
// ideal j=kStd(i,NULL,testHomog,NULL);
// test|=(Sy_bit(OPT_REDSB)|Sy_bit(OPT_REDTAIL)|Sy_bit(OPT_INTSTRATEGY));
test|=(Sy_bit(OPT_REDSB)|Sy_bit(OPT_REDTAIL));
ideal j=kStd(i,NULL,testHomog,NULL);
//idShow(j);
idDelete(&i);
PolynomialSet ret=fromSingularIdeal(g->getRing(),j);
idDelete(&j);
freeSingularRing(R);
*g=ret;
// return ret;
}
/**************************************************************************************************************************/
#include "groebnerengine.h"
static ring mySingularRingDegRevLex(PolynomialRing const &r, IntegerVector const &weight)
{
// FieldRationalsImplementation *q=dynamic_cast<FieldRationalsImplementation>r.getField().implementingObject;
ring ret=(ring)omAlloc0(sizeof(sip_sring));
if(r.getField().isRationals())
{
ret->ch=0;
}
else
{
assert(0);
}
ret->N=r.getNumberOfVariables();
ret->names=(char**) omAlloc(ret->N*sizeof(char*));
for(int i=0;i<ret->N;i++)
ret->names[i]=omStrDup(r.getVariableName(i).c_str());
ret->order=(int*)omAlloc0(3*sizeof(int));
ret->block0=(int*)omAlloc0(3*sizeof(int));
ret->block1=(int*)omAlloc0(3*sizeof(int));
ret->order[0]=ringorder_wp;//degree revlex
// ret->order[0]=ringorder_Wp;//degree lex
ret->block0[0]=1;ret->block1[0]=ret->N;
ret->order[1]=ringorder_C;
ret->wvhdl=(int**)omAlloc0(3*sizeof(int*));
ret->wvhdl[0]=(int*)omAlloc(ret->N*sizeof(int));
{
IntegerVector weight2=weight+(1-weight.min())*IntegerVector::allOnes(weight.size());
//debug<<"WEIGHT FOR SINGULAR"<<weight2<<"\n";
for(int i=0;i<ret->N;i++)
ret->wvhdl[0][i]=weight2[i];//FIXMEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
}
rComplete(ret);
// ret->options|=(Sy_bit(OPT_REDSB)|Sy_bit(OPT_REDTAIL)|Sy_bit(OPT_INTSTRATEGY)|Sy_bit(OPT_REDTHROUGH));
// cerr<<"ringoptions"<<int(ret->options)<<"\n";
// cerr<<"test"<<int(test)<<"\n";
rChangeCurrRing(ret);
// cerr<<"test"<<int(test)<<"\n";
return ret;
}
class GroebnerEngineSingular : public GroebnerEngine
{
virtual PolynomialSet groebnerBasis(bool &success, PolynomialSet const &idealGenerators, TermOrder const &termOrder, bool autoreduce)
{
PolynomialSet ret(idealGenerators.getRing());
if(!ret.getRing().getField().isRationals())
{
success=false;
return ret;
}
if(!idealGenerators.isHomogeneous())
{
success=false;
return ret;
}
if(dynamic_cast<const WeightReverseLexicographicTermOrder*> (&termOrder))
{
const WeightReverseLexicographicTermOrder *T=dynamic_cast<const WeightReverseLexicographicTermOrder*> (&termOrder);
ring R=mySingularRingDegRevLex(idealGenerators.getRing(),T->getWeight());
ideal i=singularPolynomialSet(idealGenerators);
test|=(Sy_bit(OPT_REDSB)|Sy_bit(OPT_REDTAIL)|Sy_bit(OPT_INTSTRATEGY));
test|=(Sy_bit(OPT_REDTHROUGH));
log2 cerr<<"calling singular\n";
// debug<<"test"<<int(test)<<"\n";
ideal j=kStd(i,NULL,testHomog,NULL);
log2 cerr<<"returning from singular\n";
idDelete(&i);
ret=fromSingularIdeal(ret.getRing(),j);
idDelete(&j);
freeSingularRing(R);
ret.markAndScale(termOrder);
minimize(&ret);//<---- This is needed for test case 1000 in the suite. Of course it would be nicer if Singular could compute the reduced GB itself.
autoReduce_(&ret,termOrder);//------------------------------------------REMOVE AND TRUST SINGULAR
if(!isReduced(ret))
{
/*
* This test fails on the example
* gfan _tropicaltraverse --symmetry --log2 <hannah.cone
* The monomial d^3*e*f^3*g^8*h^4*i^2 appears as a leading term, but also in a tail.
*/
debug<<idealGenerators;
debug<<ret;
autoReduce_(&ret,termOrder);
debug<<ret;
assert(0);
}
assert(isMinimal(ret));
assert(isReduced(ret));
minimize(&ret);
if(autoreduce)
autoReduce_(&ret,termOrder);
success=true;
return ret;
}
success=false;
return ret;
}
virtual PolynomialSet autoReduce(bool &success, PolynomialSet const &idealGenerators)
{
PolynomialSet ret(idealGenerators.getRing());
if(!ret.getRing().getField().isRationals())
{
success=false;
return ret;
}
if(!idealGenerators.isHomogeneous())
{
success=false;
return ret;
}
IntegerVector weight=termorderWeight(idealGenerators);
ring R=mySingularRingDegRevLex(idealGenerators.getRing(),weight);
ideal i=singularPolynomialSet(idealGenerators);
test|=(Sy_bit(OPT_REDSB)|Sy_bit(OPT_REDTAIL)|Sy_bit(OPT_INTSTRATEGY));
log2 cerr<<"calling singular\n";
ideal j=kStd(i,NULL,testHomog,NULL);
// ideal j=kInterRed(i);
log2 cerr<<"returning from singular\n";
idDelete(&i);
ret=fromSingularIdeal(ret.getRing(),j);
idDelete(&j);
freeSingularRing(R);
ret.markAndScale(WeightTermOrder(weight));
assert(isReduced(ret));
success=true;
return ret;
}
virtual const char* name()
{
return "singular";
}
};
static GroebnerEngineSingular groebnerEngineSingular;
|