File: singularconversion.cpp

package info (click to toggle)
gfan 0.5%2Bdfsg-5
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 8,296 kB
  • ctags: 5,612
  • sloc: cpp: 39,675; makefile: 453; sh: 1
file content (167 lines) | stat: -rw-r--r-- 3,246 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "singularconversion.h"
#include <assert.h>

const  char *singular_date=__DATE__" "__TIME__;

ring singularRing(PolynomialRing const &r)
{
  //  FieldRationalsImplementation *q=dynamic_cast<FieldRationalsImplementation>r.getField().implementingObject;

  ring ret=(ring)omAlloc0(sizeof(sip_sring));

  if(r.getField().isRationals())
    {
      ret->ch=0;
    }
  else
    {
      assert(0);
    }

  ret->N=r.getNumberOfVariables();

  ret->names=(char**) omAlloc(ret->N*sizeof(char*));
  for(int i=0;i<ret->N;i++)
    ret->names[i]=omStrDup(r.getVariableName(i).c_str());

  ret->order=(int*)omAlloc0(3*sizeof(int));
  ret->block0=(int*)omAlloc0(3*sizeof(int));
  ret->block1=(int*)omAlloc0(3*sizeof(int));

  //  ret->order[0]=ringorder_wp;//degree revlex
  ret->order[0]=ringorder_Wp;//degree lex
  ret->block0[0]=1;ret->block1[0]=ret->N;
  ret->order[1]=ringorder_C;

  ret->wvhdl=(int**)omAlloc0(3*sizeof(int*));
  ret->wvhdl[0]=(int*)omAlloc(ret->N*sizeof(int));
  for(int i=0;i<ret->N;i++)
    ret->wvhdl[0][i]=1;

  rComplete(ret);
  rChangeCurrRing(ret);

  return ret;
}


void freeSingularRing(ring R)
{
  rKill(R);
}


poly singularPolynomial(Polynomial const &p)
{
  int n=p.getRing().getNumberOfVariables();
  poly r=NULL;

  for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
    {
      poly p=pInit();

      FieldElement c=i->second;

      mpq_t *C=fieldElementToGmp(c);
      number n2=nlRInit(0);
      mpz_init_set(&(n2)->z,mpq_numref(*C));
      mpz_init_set(&(n2)->n,mpq_denref(*C));
      n2->s=0;
      nNormalize(n2);
      pSetCoeff0(p,n2);

      for(int j=0;j<n;j++)
	pSetExp(p,j+1,i->first.exponent[j]);
      pSetComp(p,0);
      pSetm(p);
      r=pAdd(r,p);
    }

  return r;
}


ideal singularPolynomialSet(PolynomialSet const &g)
{
  int m=g.size();


  ideal i=idInit(m,1);

  int J=0;
  for(PolynomialSet::const_iterator j=g.begin();j!=g.end();j++,J++)
    {
      i->m[J]=singularPolynomial(*j);
    }

  return i;
}


FieldElement fromSingularCoefficient(PolynomialRing const &r, number c)
{
  FieldElement C(r.getField());

  //  if((nInt(c)==0) && ((SR_HDL(c) & SR_INT)==0))
  if(((SR_HDL(c) & SR_INT)==0))
    {
      mpq_t value;

      mpq_init(value);

      mpz_set(mpq_numref(value), &(c->z));
      if (c->s <3)
      mpz_set(mpq_denref(value), &(c->n));
      else
	 mpz_set_si(mpq_denref(value),1);

      C=fieldElementFromGmp(&value);
    }
  else
    {
      C=r.getField().zHomomorphism(nInt(c));
    }
  return C;
}


Polynomial fromSingularPolynomial(PolynomialRing const &r, poly &p)
{
  int n=r.getNumberOfVariables();
  Polynomial ret(r);

  poly q=p;
  while(p)
    {
      IntegerVector v(n);
      for(int i=0;i<n;i++)
	v[i]=pGetExp(p,i+1);

      ret+=Term(fromSingularCoefficient(r,pGetCoeff(p)),Monomial(r,v));
      p=pNext(p);
    }
  if(q)
    {
      IntegerVector v(n);
      for(int i=0;i<n;i++)
	v[i]=pGetExp(q,i+1);

      ret.mark(Monomial(r,v));
    }

  return ret;
}


PolynomialSet fromSingularIdeal(PolynomialRing const &r, ideal i)
{
  PolynomialSet ret(r);

  for(int j=0;j<IDELEMS(i);j++)
    if(i->m[j]!=NULL)
      ret.push_back(fromSingularPolynomial(r,i->m[j]));

  //  AsciiPrinter(Stderr).printPolynomialSet(ret);

  return ret;
}