1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
#include "printer.h"
#include "parser.h"
#include "gfanapplication.h"
#include "division.h"
#include "log.h"
class DoesIdealContainApplication : public GFanApplication
{
SimpleOption remainderOption;
SimpleOption multiplierOption;
public:
const char *helpText()
{
return "This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false.\n";
}
DoesIdealContainApplication():
remainderOption("--remainder","Tell the program to output the remainders of the divisions rather than outputting 0 or 1."),
multiplierOption("--multiplier","Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division.")
{
registerOptions();
}
const char *name()
{
return "_doesidealcontain";
}
int main()
{
FileParser P(Stdin);
PolynomialSet a=P.parsePolynomialSetWithRing();
PolynomialRing R=a.getRing();
PolynomialSet b=P.parsePolynomialSet(R);
Polynomial multiplier=R.one();
if(multiplierOption.getValue())
{
multiplier=P.parsePolynomial(R);
}
if(remainderOption.getValue())
{
PolynomialSet s(a.getRing());
for(PolynomialSet::const_iterator i=b.begin();i!=b.end();i++)
{
WeightReverseLexicographicTermOrder T(termorderWeight(a));
s.push_back(division(multiplier* *i,a,T/*LexicographicTermOrder()*/));
}
pout<<s.getRing()<<s;
}
else
{
bool c=true;
for(PolynomialSet::const_iterator i=b.begin();i!=b.end();i++)
{
Polynomial remainder=division(multiplier* *i,a,LexicographicTermOrder());
log2 AsciiPrinter(Stderr).printString("Remainder: ");
log2 AsciiPrinter(Stderr).printPolynomial(remainder);
log2 AsciiPrinter(Stderr).printNewLine();
if(!remainder.isZero())
{
log1 AsciiPrinter(Stderr).printString("Polynomial not in ideal: ");
log1 AsciiPrinter(Stderr).printPolynomial(multiplier* *i);
log1 AsciiPrinter(Stderr).printNewLine();
c=false;
break;
}
}
AsciiPrinter(Stdout).printInteger(c);
AsciiPrinter(Stdout).printNewLine();
}
return 0;
}
};
static DoesIdealContainApplication theApplication;
|