1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#include <iostream>
#include "parser.h"
#include "printer.h"
#include "polynomial.h"
#include "division.h"
#include "buchberger.h"
#include "wallideal.h"
#include "lp.h"
#include "reversesearch.h"
#include "breadthfirstsearch.h"
#include "termorder.h"
#include "ep_standard.h"
#include "ep_xfig.h"
#include "gfanapplication.h"
#include "polyhedralfan.h"
#include "minkowskidual.h"
#include "log.h"
class MinkowskiEnumerationTarget:public EnumerationTarget
{
SymmetryGroup const &s;
public:
IntegerVectorList weightVectors;
MinkowskiEnumerationTarget(SymmetryGroup const &s_):
s(s_)
{
}
virtual void beginEnumeration(const PolynomialSet &groebnerBasis)
{
}
virtual void endEnumeration()
{
}
virtual bool basis(const PolynomialSet &groebnerBasis)
{
// log0 cerr<<"ETST"<<endl;
PolyhedralCone c=coneFromMarkedBasis(groebnerBasis);
weightVectors.push_back(PolyhedralFan::stableRay(c,&s));
return true;
} /* return false to break enumaration */
};
class MinkowskiApplication : public GFanApplication
{
SimpleOption optionSymmetry;
SimpleOption optionDisableSymmetryTest;
SimpleOption optionIgnoreCones;
SimpleOption optionPartOne;
SimpleOption optionPartTwo;
public:
const char *helpText()
{
return "This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials.\n";
}
MinkowskiApplication():
optionSymmetry("--symmetry",
"Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.\n"),
optionDisableSymmetryTest("--disableSymmetryTest","When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.\n"),
optionIgnoreCones("--nocones","Tell the program to not list cones in the output."),
optionPartOne("--partOne","Do only the fist part of the computation i.e. compute a weight vector for each vertex.\n"),
optionPartTwo("--partTwo","Do only the second part of the computation .\n")
{
registerOptions();
optionPartOne.hide();
optionPartTwo.hide();
}
const char *name()
{
return "_minkowskisum";
}
int main()
{
LexicographicTermOrder myOrder;
PolynomialSet g=FileParser(Stdin).parsePolynomialSetWithRing();
g.sort_();
g.markAndScale(myOrder);
SymmetryGroup s(g.numberOfVariablesInRing());
IntegerVectorList generators;
if(optionSymmetry.getValue())
{
generators=FileParser(Stdin).parseIntegerVectorList();
if(!optionDisableSymmetryTest.getValue())
{
/* for(IntegerVectorList::iterator i=generators.begin();i!=generators.end();i++)
{
PolynomialSet G=SymmetryGroup::permutePolynomialSet(g,*i);
G.sort_();
assert(g==G);
}
*/
assertSymmetriesMatch(generators, g,0,true);//eldMatrix const *torusActions);
}
s.computeClosure(generators);
s.createByteTable();
}
// EnumerationTargetCollector ep;
IntegerVectorList weightVectors;
if(optionPartTwo.getValue())
{
weightVectors=FileParser(Stdin).parseIntegerVectorList();
}
else
{
MinkowskiEnumerationTarget ep(s);
log1 fprintf(Stderr,"Traversing normal fan.\n");
BreadthFirstSearch rs(s,true);
rs.setEnumerationTarget(&ep);
rs.enumerate(g);
weightVectors=ep.weightVectors;
}
if(optionPartOne.getValue())
{
AsciiPrinter P(Stdout);
P.printPolynomialSet(g);
if(optionSymmetry.getValue())
P.printVectorList(generators);
P.printVectorList(weightVectors);
}
else
{
log1 fprintf(Stderr,"Computing polyhedral cones.\n");
int n=g.getRing().getNumberOfVariables();
PolyhedralFan f(n);
int counter=0;
for(IntegerVectorList::const_iterator i=weightVectors.begin();i!=weightVectors.end();i++)
{
{
static int t;
if(!((t++)%10))log1 fprintf(Stderr,"%i\n",t);
}
// if(counter++==35)break;
//log0 fprintf(Stderr,"Weight vektor:\n");
//log0 AsciiPrinter(Stderr).printVector(*i);
// log0 fprintf(Stderr,"1");
WeightTermOrder T(*i);
g.markAndScale(T);
// log0 fprintf(Stderr,"2");
PolyhedralCone c=coneFromMarkedBasis(g);
// log0 fprintf(Stderr,"3");
//inequalities=
/*wallInequalities(g);
fprintf(stderr,"%i ",inequalities.size());
inequalities=normalizedWithSumsAndDuplicatesRemoved(inequalities);
fprintf(stderr,"%i\n",inequalities.size());
IntegerVectorList empty;
PolyhedralCone c(inequalities,empty,n);
*/
c.canonicalize();
//log0 fprintf(Stderr,"4");
f.insert(c);
//log0 fprintf(Stderr,"5\n");
//static int i;
//log0 fprintf(Stderr,"inserted:%i\n",++i);
}
log1 fprintf(Stderr,"Resolving symmetries.\n");
/* {
SymmetricComplex c=dualMinkowskiMixed(g,s,f);
return 0;
}*/
AsciiPrinter P(Stdout);
f.printWithIndices(&P,
FPF_conesExpanded|
(optionIgnoreCones.getValue()?0:FPF_cones|FPF_maximalCones)|
(optionSymmetry.getValue()?FPF_group|FPF_conesCompressed:0),
&s);
// f.printWithIndices(&P,false, &s,optionSymmetry.getValue(),optionIgnoreCones.getValue());
}
return 0;
}
};
static MinkowskiApplication theApplication;
|