File: app_nbody.cpp

package info (click to toggle)
gfan 0.5%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 8,348 kB
  • ctags: 5,683
  • sloc: cpp: 39,675; makefile: 454; sh: 1
file content (132 lines) | stat: -rw-r--r-- 4,093 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "vektor.h"
#include "printer.h"
#include "parser.h"
#include "gfanapplication.h"
#include "nbody.h"
#include "field_rationals.h"
#include <iostream>

class NBodyApplication : public GFanApplication
{
  IntegerOption NOption;
  SimpleOption optionWithMasses;
  SimpleOption optionSymmetric;
  SimpleOption optionDziobek;
  IntegerOption optionDeterminants;
  SimpleOption optionMM;
  SimpleOption optionSVariables;
  SimpleOption optionLaurent;
  //SimpleOption optionKaloshin;
public:
  bool includeInDefaultInstallation()
  {
    return false;
  }
  const char *helpText()
  {
    return "This program computes the AC equations for the nbody problem.\n";
  }
  NBodyApplication():
    NOption("-N","Specify number of bodies.",3),
    optionWithMasses("--masses","Include mass variables."),
    optionSymmetric("--symmetric","Produce the symmetric equations"),
    optionDziobek("--dziobek","Produce the Dziobek equations"),
    optionDeterminants("--codim","Produce the determinant equations",-1),
    optionMM("--mm","Add in additional mass equation"),
    optionSVariables("-s","Treat the Sij polynomials as variables"),
    optionLaurent("--laurent","Output Laurent polynomials instead of multiplying")
//    optionKaloshin("--kaloshin","Produce the polynomials from the Albouy Kaloshin paper")
  {
    registerOptions();
  }
  const char *name()
  {
    return "_nbody";
  }
/*
  int offset(int N, int i, int j)
  {
  }
  Polynomial varz(PolynomialRing const &r, int i)
  {
    int N=4;
    return r.ithVariable(i);
  }
  Polynomial varw(PolynomialRing const &r, int i)
  {
    int N=4;
    return r.ithVariable(N+i);
  }
  Polynomial varZ(PolynomialRing const &r, int i, int j)
  {
    int N=4;
    int sign=(i<j)?1:-1;
    if(j<i){i-=j;j-=i;i-=j;}
    return r.polynomialFromField(Q.zHomomorphism(sign)).ithVariable(offset(N,i,j));
  }
*/
  int main()
  {
    AsciiPrinter PP(stdout);

 /*   if(optionKaloshin.getValue())
      {
        PolynomialRing r=StringParser("Q[z1,z2,z3,z4,w1,w2,w3,w4,Z12,Z13,Z14,Z23,Z24,Z34,W12,W13,W14,W23,W24,W34]");

        PolynomialSet g(r);
        int N=4;
        for(int i=0;i<N;i++)
          for(int j=0;j<i;j++)
            {
              g.push_back((varz(r,i)-varz(r,j))*(varw(r,i)-varw(r,j))*(varw(r,i)-varw(r,j))*(varw(r,i)-varw(r,j))*varW(r,i,j)*varW(r,i,j)-r.one());
              g.push_back((varw(r,i)-varw(r,j))*(varz(r,i)-varz(r,j))*(varz(r,i)-varz(r,j))*(varz(r,i)-varz(r,j))*varZ(r,i,j)*varZ(r,i,j)-r.one());
            }
        for(int i=0;i<N;i++)
          {
            Polynomial A=-varz(r,i);
            Polynomial B=-varw(r,i);

            for(int j=0;j<N;j++)
            if(i!=j)
              {
                A+=varZ(r,i,j);//times m
                B+=varW(r,i,j);//times m
              }
            g.push_back(A);
            g.push_back(B);
          }
        PP<<g.getRing();
        PP<<g;
        return 0;
      }
   */

    PolynomialSet g=AlbouyChencinerEquations(NOption.getValue(),optionWithMasses.getValue(),optionSymmetric.getValue(),optionSVariables.getValue(),!optionLaurent.getValue());

    if(optionSVariables.getValue())
      {
	PolynomialSet s=SEquations(g.getRing(),NOption.getValue(),optionWithMasses.getValue());
	for(PolynomialSet::const_iterator i=s.begin();i!=s.end();i++)g.push_back(*i);
      }

    if(optionDziobek.getValue())
      {
	PolynomialSet dz=DziobekEquations(g.getRing(),NOption.getValue(),optionWithMasses.getValue(),optionSVariables.getValue(),!optionLaurent.getValue());
	for(PolynomialSet::const_iterator i=dz.begin();i!=dz.end();i++)g.push_back(*i);
      }

    if(optionDeterminants.getValue()!=-1)
      {
	PolynomialSet de=nbodyDeterminants(g.getRing(),NOption.getValue(),optionWithMasses.getValue(),1+NOption.getValue()-optionDeterminants.getValue());
	for(PolynomialSet::const_iterator i=de.begin();i!=de.end();i++)g.push_back(*i);
      }
    if(optionMM.getValue())g.push_back(massEquation(g.getRing(),NOption.getValue(),optionWithMasses.getValue()));

    PP<<g.getRing();
    PP<<g;

    return 0;
  }
};

static NBodyApplication theApplication;