1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
|
#include "bergman.h"
#include "enumeration.h"
#include "reversesearch.h"
#include "tropical.h"
#include "buchberger.h"
#include "division.h"
#include "dimension.h"
#include "wallideal.h"
#include "lp.h"
#include "subspace.h"
#include "symmetry.h"
#include "tropical2.h"
#include "tropicalbasis.h"
#include "polyhedralcone.h"
#include "multiplicity.h"
#include "log.h"
static Polynomial wallPolynomial(Polynomial const &p, Subspace const &subspace)
// This routine should be deleted since it is inefficient
// hmm... does this actually work?
{
Polynomial r(p.getRing());
IntegerVector markedExponent=p.getMarked().m.exponent;
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
{
IntegerVector dif=markedExponent-i->first.exponent;
if(subspace.contains(dif))
r+=Polynomial(Term(i->second,i->first));
}
r.mark(Monomial(p.getRing(),markedExponent));
return r;
}
static PolynomialSet wallIdeal(PolynomialSet const &groebnerBasis, Subspace const &subspace)
{
// fprintf(Stderr,"wallIdeal %i",perp.size());
PolynomialSet ret(groebnerBasis.getRing());
for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
ret.push_back(wallPolynomial(*i,subspace));
// fprintf(Stderr,"done\n");
return ret;
}
BergmanFan bergmanRayIntersection(PolynomialSet const &idealGroebnerBasis)
// Input ideal is assumed to be homogeneous with respect to a positive vector
// Input ideal is assumed not to contain a monomial
// Call the Krull dimensionn of the ring/ideal d
// The ideal is homogenous with respect to a vector space of dimension d-1
// All d dimensional cones in the Gro\"obner fan with no monomials are computed
{
BergmanFan bfan;
int n=idealGroebnerBasis.numberOfVariablesInRing();
int d=krullDimension(idealGroebnerBasis); //There should be a better way of doing this
PolyhedralFan bergmanFan(n);
PolynomialSet tropBasis=tropicalBasisOfCurve(n,idealGroebnerBasis,&bergmanFan,d-1);
// PolyhedralFan bergmanFan=tropicalPrincipalIntersection(n,tropBasis,d-1);
IntegerVectorList rays=bergmanFan.getRays(d);
int maximalConeLabel=0;
// fprintf(Stderr,"---------------------------------------------------------\n");
// AsciiPrinter(Stderr).printVectorList(rays);
// fprintf(Stderr,"---------------------------------------------------------\n");
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
{
PolynomialSet g=idealGroebnerBasis;
buchberger(&g,WeightReverseLexicographicTermOrder(*i));
PolynomialSet cg=initialFormsAssumeMarked(g,*i);
bool inList=false;
for(BergmanFan::MaximalConeList::const_iterator j=bfan.cones.begin();j!=bfan.cones.end();j++)
{
if(areIdealsEqual(j->coneGroebnerBasis,cg))
{
inList=true;
break;
}
}
if(!inList)
{
bfan.cones.push_back(BergmanFan::MaximalCone(cg,g,maximalConeLabel++));
}
}
// AsciiPrinter temp(Stderr);
// bfan.print(temp);
return bfan;
}
BergmanFan bergmanRay(PolynomialSet const &idealGroebnerBasis)
// Input ideal is assumed to be homogeneous with respect to a positive vector
// Input ideal is assumed not to contain a monomial
// Call the Krull dimensionn of the ring/ideal d
// The ideal is homogenous with respect to a vector space of dimension d-1
// All d dimensional cones in the Gro\"obner fan with no monomials are computed
{
BergmanFan bfan;
EnumerationTargetCollector gfan;
LexicographicTermOrder myTermOrder;
ReverseSearch rs(myTermOrder);
rs.setEnumerationTarget(&gfan);
rs.enumerate(idealGroebnerBasis);
int n=idealGroebnerBasis.numberOfVariablesInRing();
fprintf(Stderr,"rankOfMatrix(wallin.idealGroebnerBasis=%i\n",rankOfMatrix(wallInequalities(idealGroebnerBasis)));
AsciiPrinter(Stderr).printVectorList(wallInequalities(idealGroebnerBasis));
int d=n-rankOfMatrix(wallInequalities(idealGroebnerBasis))+1;
int krull=krullDimension(idealGroebnerBasis);
//AsciiPrinter(Stderr).printVectorList(wallInequalities(idealGroebnerBasis));
assert(rankOfMatrix(wallInequalities(idealGroebnerBasis))==Subspace(wallInequalities(idealGroebnerBasis)).dimension());
// fprintf(Stderr,"d: %i krull: %i\n",d,krull);
// assert(d==krull);
int maximalConeLabel=0;
for(PolynomialSetList::const_iterator g=gfan.theList.begin();g!=gfan.theList.end();g++)
{
PolynomialSetList s;
//fprintf(Stderr,"current gbasis:\n");
//AsciiPrinter(Stderr).printPolynomialSet(*g);
if(0)
{
s=fullColoredIdeals(*g,false);
fprintf(Stderr,"Full colored ideals computed, #=%i\n",s.size());
}
else
{
IntegerVectorList inequalities=wallInequalities(*g);
inequalities=wallFlipableNormals(*g,true);
int isize=inequalities.size();
// fprintf(Stderr,"cdd facets to rays ");
// AsciiPrinter(Stderr).printVectorList(inequalities);
IntegerVectorList rays=extremeRaysInequalityIndices(inequalities);
//fprintf(Stderr,"done\n");
//AsciiPrinter(Stderr).printVectorList(rays);
// AsciiPrinter(Stderr).printVectorList(rays);
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
if(i->size()!=isize)
{
IntegerVectorList perp;
int j=0;
int K=0;
for(IntegerVectorList::const_iterator k=inequalities.begin();k!=inequalities.end()&&j<i->size();k++,K++)
if((*i)[j]==K)
{
perp.push_back(*k);
j++;
}
s.push_back(wallIdeal(*g,Subspace(perp)));
}
}
//fprintf(Stderr,"Number of face ideals to check:%i\n",s.size());
for(PolynomialSetList::const_iterator i=s.begin();i!=s.end();i++)
{
//fprintf(Stderr,"d:%i\n",d);
//fprintf(Stderr,"krull:%i\n",krull);
//fprintf(Stderr,"n:%i\n",n);
//fprintf(Stderr,"rank: %i\n",rankOfMatrix(wallInequalities(*i)));
assert(i->isMarked());
// fprintf(Stderr,"d: %i, rank %i",d,n-rankOfMatrix(wallInequalities(*i)));
if(d==n-rankOfMatrix(wallInequalities(*i)))//dimension check
{
// fprintf(Stderr,"Checking monomial containment");
if(!containsMonomial(*i))
{
// fprintf(Stderr,"Done - no\n");
PolynomialSet cg=*i;
//buchberger(&cg,StandardGradedLexicographicTermOrder()); The cg is already a Groebner basis
bool inList=false;
for(BergmanFan::MaximalConeList::const_iterator j=bfan.cones.begin();j!=bfan.cones.end();j++)
{
if(areIdealsEqual(j->coneGroebnerBasis,cg))
{
inList=true;
break;
}
}
if(!inList)
{
bfan.cones.push_back(BergmanFan::MaximalCone(cg,*g,maximalConeLabel++));
}
}
// else
// fprintf(Stderr,"Done - yes\n");
}
else
fprintf(Stderr,"dimension check fails\n");
}
}
//fprintf(Stderr,"No duplicates:\n");
/* for(PolynomialSetList::const_iterator i=tropical.begin();i!=tropical.end();i++)
{
AsciiPrinter(Stdout).printPolynomialList(i->coneGroebnerBasis);
int coDim=rankOfMatrix(wallInequalities(*i));
int d=i->numberOfVariablesInRing()-coDim;
fprintf(Stderr,"%i\n",d);
}
*/
return bfan;
}
static bool staticInOrbit(PolynomialSet const &groebnerBasis1, PolynomialSet const &groebnerBasis2, SymmetryGroup const &s)
{
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
if(areIdealsEqual(SymmetryGroup::permutePolynomialSet(groebnerBasis2,*j),groebnerBasis1))return true;
return false;
}
static bool staticPermutationFixesCone(PolynomialSet const &groebnerBasis, IntegerVector const &v)
{ // Cone is fixed iff the cone ideal is fixed.
PolynomialSet q(groebnerBasis.getRing());
for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
{
q.push_back(SymmetryGroup::permutePolynomial(*i,v));
}
return areIdealsEqual(q,groebnerBasis);
}
static int staticOrbitSize(PolynomialSet const &groebnerBasis, SymmetryGroup const &s)
{
int groupSize=s.elements.size();
int numFixed=0;
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
if(staticPermutationFixesCone(groebnerBasis,*j))numFixed++;
// fprintf(Stderr,"groupSize = %i, numFixed = %i\n",groupSize,numFixed);
return groupSize/numFixed;
}
class ConeOrbit
{
public:
const SymmetryGroup &s;
PolynomialSet coneGroebnerBasis;
PolynomialSet idealGroebnerBasis;
int label;
PolynomialSetList markedFacets;
PolyhedralCone theCone;
ConeOrbit(const SymmetryGroup &s_, PolynomialSet const &coneGroebnerBasis_, PolynomialSet const &idealGroebnerBasis_, int label_):
coneGroebnerBasis(coneGroebnerBasis_),
idealGroebnerBasis(idealGroebnerBasis_),
label(label_),
s(s_),
theCone(wallInequalities(coneGroebnerBasis_),
wallFlipableNormals(idealGroebnerBasis_,false),
idealGroebnerBasis_.getRing().getNumberOfVariables())
{
theCone.findFacets();
}
void markFacet(PolynomialSet const &f)
{
markedFacets.push_back(f);
}
bool containsAndMark(PolynomialSet const &coneGroebnerBasis_, PolynomialSet const &facetIdeal, IntegerVector *labelPermutation)
{
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
if(areIdealsEqual(coneGroebnerBasis,SymmetryGroup::permutePolynomialSet(coneGroebnerBasis_,*j)))
{
PolynomialSet facetIdeal2=SymmetryGroup::permutePolynomialSet(facetIdeal,*j);
bool found=false;
for(PolynomialSetList::const_iterator i=markedFacets.begin();i!=markedFacets.end();i++)
if(areIdealsEqual(*i,facetIdeal2))
{
found=true;
break;
}
// assert(!found); //this is not a mistake is it?
markedFacets.push_back(facetIdeal2);
if(labelPermutation)*labelPermutation=*j;
return true;
}
return false;
}
/* Alternative using only geometric information.
*/
/* bool containsAndMark(IntegerVector const &v, IntegerVector *labelPermutation)
{
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
if(theCone.contains(SymmetryGroup::compose(*j,v)))
{
// PolynomialSet facetIdeal2=SymmetryGroup::permutePolynomialSet(facetIdeal,*j);
bool found=false;
for(PolynomialSetList::const_iterator i=markedFacets.begin();i!=markedFacets.end();i++)
if(areIdealsEqual(*i,facetIdeal2))
{
found=true;
break;
}
// assert(!found); //this is not a mistake is it?
markedFacets.push_back(facetIdeal2);
if(labelPermutation)*labelPermutation=*j;
return true;
}
return false;
}*/
bool isMarkedFacet(PolynomialSet const &f)
{
for(SymmetryGroup::ElementContainer::const_iterator j=s.elements.begin();j!=s.elements.end();j++)
if(staticPermutationFixesCone(coneGroebnerBasis,*j))
for(PolynomialSetList::const_iterator i=markedFacets.begin();i!=markedFacets.end();i++)
if(areIdealsEqual(SymmetryGroup::permutePolynomialSet(f,*j),*i))return true;
return false;
}
int orbitSize()
{
return staticOrbitSize(coneGroebnerBasis,s);
}
void print(AsciiPrinter &p)const
{
p.printString("ConeOrbit{\n");
p.printInteger(label);
p.printString("\nConeIdeal:\n");
p.printPolynomialSet(coneGroebnerBasis);
p.printString("\nFullIdeal:\n");
p.printPolynomialSet(idealGroebnerBasis);
p.printString("Marked facets:\n");
p.printPolynomialSetList(markedFacets);
p.printString("}ConeOrbit\n");
}
};
class ConeOrbitContainer
{
typedef list<ConeOrbit> ConeOrbitList;
ConeOrbitList l;
public:
void push_back(const ConeOrbit &orbit)
{
l.push_back(orbit);
}
bool empty()
{
return l.empty();
}
ConeOrbit &front()
{
return *l.begin();
}
int size()
{
return l.size();
}
void pop_front()
{
l.pop_front();
}
void print(AsciiPrinter &p)
{
p.printString("OrbitList{\n");
for(ConeOrbitList::const_iterator i=l.begin();i!=l.end();i++)
{
i->print(p);
// p.printPolynomialSet(i->coneGroebnerBasis);
//p.printNewLine();
}
p.printString("}OrbitList\n");
}
bool containsAndMark(PolynomialSet const &coneGroebnerBasis, PolynomialSet const &facetIdeal, int *label, IntegerVector *labelPermutation)
{
// fprintf(Stderr,"listlength:%i",l.size());
// int I=0;
// for(ConeOrbitList::const_iterator i=l.begin();i!=l.end();i++)
// {
// fprintf(Stderr,"%i",I++);
// }
for(ConeOrbitList::iterator i=l.begin();i!=l.end();i++)
{
/* fprintf(Stderr,"Comparing:\n");
AsciiPrinter(Stderr).printPolynomialSet(coneGroebnerBasis);
AsciiPrinter(Stderr).printPolynomialSet(i->coneGroebnerBasis);
*/
if(i->containsAndMark(coneGroebnerBasis,facetIdeal,labelPermutation))
// if(areIdealsEqual(coneGroebnerBasis,i->coneGroebnerBasis))// this could be slow!
{
*label=i->label;
return true;
}
// if(i->coneGroebnerBasis==coneGroebnerBasis)return true;
}
/* fprintf(Stderr,"________________NOT IN LIST:\n");
AsciiPrinter(Stderr).printPolynomialSet(coneGroebnerBasis);
*/
return false;
}
};
BergmanFan bergman(PolynomialSet const &coneGroebnerBasis1, PolynomialSet const &idealGroebnerBasis1, SymmetryGroup const *symmetryGroup)
{
PolynomialRing theRing=coneGroebnerBasis1.getRing();
bool useFanIntersection=true;
bool isSimplicial=true;
assert(coneGroebnerBasis1.numberOfVariablesInRing()==idealGroebnerBasis1.numberOfVariablesInRing());
int n=coneGroebnerBasis1.numberOfVariablesInRing();
SymmetryGroup localSymmetryGroup(n);
if(!symmetryGroup)symmetryGroup=&localSymmetryGroup;
BergmanFan ret;
ret.setSymmetryGroup(*symmetryGroup);
ConeOrbitContainer active;
int maximalConeLabel=0;
{
ConeOrbit newConeOrbit(*symmetryGroup,coneGroebnerBasis1,idealGroebnerBasis1,maximalConeLabel++);
log1 fprintf(Stderr,"Adding orbit of size: %i\n",newConeOrbit.orbitSize());
active.push_back(newConeOrbit);
}
while(!active.empty())
{
log1 fprintf(Stderr,"\n-------------------------------------\n");
log1 fprintf(Stderr,"Size of active set: %i, Completed: %i\n",active.size(),ret.cones.size());
log1 fprintf(Stderr,"-------------------------------------\n");
AsciiPrinter p(Stderr);
// fprintf(Stderr,"----------------Active--------------------\n");
// active.print(p);
// ret.print(p);
ConeOrbit ¤t=active.front();
assert(current.idealGroebnerBasis.isMarked());
assert(current.coneGroebnerBasis.isMarked());
/* fprintf(Stderr,"ConeGroebnerBasis:\n");
AsciiPrinter(Stderr).printPolynomialSet(current.coneGroebnerBasis);
fprintf(Stderr,"\n");
fprintf(Stderr,"IdealGroebnerBasis:\n");
AsciiPrinter(Stderr).printPolynomialSet(current.idealGroebnerBasis);
fprintf(Stderr,"\n");
*/
IntegerVectorList equalities=wallInequalities(current.coneGroebnerBasis);
/*fprintf(Stderr,"Perp:\n");
AsciiPrinter(Stderr).printVectorList(facePerp);
AsciiPrinter(Stderr).printPolynomialSet(current.idealGroebnerBasis);
*/
IntegerVectorList normals=wallFlipableNormals(current.idealGroebnerBasis,false);
/*fprintf(Stderr,"Normals:\n");
AsciiPrinter(Stderr).printVectorList(normals);
*/
{
PolyhedralCone p(normals,equalities);
p.findFacets();
isSimplicial&=p.isSimplicial();
}
removeRedundantRows(&normals,&equalities,true);//IS THIS RIGHT?
IntegerVectorList facePerp=equalities;
int numberOfNormals=normals.size();
int numberOfEqualities=equalities.size();
IntegerVectorList inequalities=equalities;
inequalities.splice(inequalities.begin(),normals,normals.begin(),normals.end());
IntegerVector equalitySet(inequalities.size());
for(int i=0;i<numberOfEqualities;i++)
equalitySet[i+numberOfNormals]=1;
// fprintf(Stderr,"Inequalities:\n");
// AsciiPrinter(Stderr).printVectorList(inequalities);
// fprintf(Stderr,"EqualitySet:\n");
// AsciiPrinter(Stderr).printVector(equalitySet);
IntegerVectorList::const_iterator i=inequalities.begin();
int numberOfValidFacets=0;
int numberOfAlreadyMarkedFacets=0;
for(int I=0;I<numberOfNormals;I++)
{
//AsciiPrinter(Stderr).printVector(*i);
equalitySet[I]=1;
//AsciiPrinter(Stderr).printVector(equalitySet);
// fprintf(Stderr,(hasInteriorPoint(inequalities,true,&equalitySet))?"TRUE\n":"FALSE\n");
if(hasInteriorPoint(inequalities,true,&equalitySet))
{
// compute initial ideal
PolynomialSet initialIdeal(theRing);
int oldDim=rankOfMatrix(facePerp);
facePerp.push_back(*i);
int newDim=rankOfMatrix(facePerp);
// for(PolynomialSet::const_iterator k=current.idealGroebnerBasis.begin();k!=current.idealGroebnerBasis.end();k++)
// initialIdeal.push_back(wallPolynomial(*k,facePerp));
initialIdeal=wallIdeal(current.idealGroebnerBasis,Subspace(facePerp));
facePerp.pop_back();
if(oldDim!=newDim)
{
numberOfValidFacets++;
if(!current.isMarkedFacet(initialIdeal))
{
// fprintf(Stderr,"Computing Bergman fan of initial ideal:\n");
// AsciiPrinter(Stderr).printPolynomialSet(initialIdeal);
BergmanFan b=useFanIntersection?bergmanRayIntersection(initialIdeal):bergmanRay(initialIdeal);
//AsciiPrinter p(Stderr);
//b.print(p);
ret.codimensionOneCones.push_back(BergmanFan::CodimensionOneCone(initialIdeal));
/* {
AsciiPrinter p(Stderr);
fprintf(Stderr,"Subfan:\n");
b.print(p);
}*/
for(BergmanFan::MaximalConeList::const_iterator i=b.cones.begin();i!=b.cones.end();i++)
{
assert(i->idealGroebnerBasis.isMarked());
int label=-1;
IntegerVector labelPermutation;
if(!active.containsAndMark(i->coneGroebnerBasis,initialIdeal,&label,&labelPermutation))
{
if(!ret.contains(i->coneGroebnerBasis))
{
/*fprintf(Stderr,"Lifting...\n");
AsciiPrinter(Stderr).printPolynomialSet(i->idealGroebnerBasis);
*/
PolynomialSet g2(theRing);
for(PolynomialSet::const_iterator j=i->idealGroebnerBasis.begin();j!=i->idealGroebnerBasis.end();j++)
g2.push_back(divisionLift(*j, initialIdeal, current.idealGroebnerBasis, LexicographicTermOrder()));
//fprintf(Stderr,"Done lifting.\n");
assert(g2.isMarked());
//fprintf(Stderr,"Autoreducing...\n");
//AsciiPrinter(Stderr).printPolynomialSet(g2);
autoReduce(&g2,LexicographicTermOrder());
//fprintf(Stderr,"Done autoreducing.\n");
// fprintf(Stderr,"Inserting:\n");
// AsciiPrinter(Stderr).printPolynomialSet(i->coneGroebnerBasis);
// AsciiPrinter(Stderr).printPolynomialSet(g2);
label=maximalConeLabel++;
labelPermutation=SymmetryGroup::identity(n);
ConeOrbit newConeOrbit(*symmetryGroup,i->coneGroebnerBasis,g2,label);
log1 fprintf(Stderr,"Adding orbit of size: %i\n",newConeOrbit.orbitSize());
newConeOrbit.markFacet(initialIdeal);
active.push_back(newConeOrbit);
}
}
ret.codimensionOneCones.back().incidenceList.push_back(label);
ret.codimensionOneCones.back().incidencePermutationList.push_back(labelPermutation);
}
}
else
numberOfAlreadyMarkedFacets++;
}
}
equalitySet[I]=0;
i++;
}
log1 fprintf(Stderr,"Done processing this orbit - Number of valid facets: %i Number of already marked facets: %i\n",numberOfValidFacets,numberOfAlreadyMarkedFacets);
ret.cones.push_back(BergmanFan::MaximalCone(current.coneGroebnerBasis,current.idealGroebnerBasis,current.label,numberOfValidFacets));
active.pop_front();
}
ret.setSimplicial(isSimplicial);
return ret;
}
//--------------------------------------
// BergmanFan
//--------------------------------------
int BergmanFan::numberOfMaximalCones()const
{
int ret=0;;
for(MaximalConeList::const_iterator i=cones.begin();i!=cones.end();i++)
ret+=staticOrbitSize(i->coneGroebnerBasis, symmetryGroup);
return ret;
}
void BergmanFan::print(Printer &p)
{
int numberOfMaximalCones=0;
p.printString("Printing tropical variety modulo symmetry\n");
p.printString("-----------------");
p.printNewLine();
p.printString("1. Maximal cones:\n");
p.printString("-----------------");
p.printNewLine();
for(MaximalConeList::const_iterator i=cones.begin();i!=cones.end();i++)
{
p.printString("Orbit index: ");
p.printInteger(i->label);
p.printString("\n");
p.printString("Groebner pair:\n");
p.printPolynomialSet(i->coneGroebnerBasis);
p.printPolynomialSet(i->idealGroebnerBasis);
int orbitSize=(symmetryGroup.sizeOfBaseSet())?staticOrbitSize(i->coneGroebnerBasis,symmetryGroup):1;
p.printString("OrbitSize:");
p.printInteger(orbitSize);
p.printString("\n");
p.printString("NumberOfFacets:");
p.printInteger(i->numberOfFacets);
p.printString("\n\n");
numberOfMaximalCones+=orbitSize;
/* {
IntegerVectorList normals=wallInequalities(i->idealGroebnerBasis);
IntegerVectorList equations=wallInequalities(i->coneGroebnerBasis);
PolyhedralCone c(normals,equations);
c.canonicalize();
c.print(&p);
}
*/
if(symmetryGroup.sizeOfBaseSet())
{
list<int> indices;
int index=0;
for(MaximalConeList::const_iterator j=cones.begin();j!=cones.end();j++,index++)
if(staticInOrbit(j->coneGroebnerBasis,i->coneGroebnerBasis,symmetryGroup))indices.push_back(index);
if(indices.size()>1)
{
fprintf(Stderr,"Conflicting orbits!!!!:");
for(list<int>::const_iterator j=indices.begin();j!=indices.end();j++)
fprintf(Stderr," %i ",*j);
fprintf(Stderr,"\n");
}
}
}
p.printString("-----------------------");
p.printNewLine();
p.printString("2. Codimension 1 cones:\n");
p.printString("-----------------------");
p.printNewLine();
for(CodimensionOneConeList::const_iterator i=codimensionOneCones.begin();i!=codimensionOneCones.end();i++)
{
//p.printString("----------------------");
// p.printNewLine();
p.printString("Groebner basis of initial ideal:\n");
p.printPolynomialSet(i->idealGroebnerBasis);
// p.printNewLine();
p.printString("Adjacent maximal cones (orbit index, permutation):\n");
p.printString("(");
IntegerVectorList::const_iterator J=i->incidencePermutationList.begin();
for(list<int>::const_iterator j=i->incidenceList.begin();j!=i->incidenceList.end() && J!=i->incidencePermutationList.end();j++,J++)
{
if(j!=i->incidenceList.begin())p.printString(",\n");
p.printString("(");
p.printInteger(*j);
p.printString(", ");
p.printVector(*J);
p.printString(")");
}
p.printString(")\n");
{
int index=*(i->incidenceList.begin());
MaximalConeList::const_iterator j=cones.begin();
while(index>0){index--;j++;}
// IntegerVectorList normals=wallInequalities(SymmetryGroup::permutePolynomialSet(j->idealGroebnerBasis,*(i->incidencePermutationList.begin())));
/*
IntegerVectorList normals=wallInequalities(SymmetryGroup::permutePolynomialSet(j->idealGroebnerBasis,SymmetryGroup::inverse(*(i->incidencePermutationList.begin()))));
IntegerVectorList equations=wallInequalities(i->idealGroebnerBasis);
PolyhedralCone c(normals,equations);
c.canonicalize();
c.print(&p);
*/
/* p.printString("-----------");
p.printNewLine();
PolyhedralFan F=PolyhedralFan::facetsOfCone(c);
F.print(&p);
p.printString("-----------");
p.printNewLine();
*/
//p.printString("----------------------");
p.printNewLine();
}
}
p.printString("Done printing tropical variety - #maxcones=");
p.printInteger(numberOfMaximalCones);
p.printString(" (");
p.printInteger(cones.size());
p.printString(") #codim1cones= ? (");
p.printInteger(codimensionOneCones.size());
p.printString(")");
p.printNewLine();
}
bool BergmanFan::contains(PolynomialSet const &g)
{
for(MaximalConeList::const_iterator i=cones.begin();i!=cones.end();i++)
{
if(areIdealsEqual(g,i->coneGroebnerBasis))
{
return true;
}
}
return false;
}
void BergmanFan::setSymmetryGroup(SymmetryGroup const &s)
{
symmetryGroup=s;
}
PolyhedralFan BergmanFan::toPolyhedralFan()const
{
assert(!cones.empty());
int n=cones.begin()->idealGroebnerBasis.numberOfVariablesInRing();
PolyhedralFan ret(n);
for(MaximalConeList::const_iterator i=cones.begin();i!=cones.end();i++)
{
PolyhedralCone c1(wallInequalities(i->idealGroebnerBasis),wallInequalities(i->coneGroebnerBasis));
log1 fprintf(Stderr,"Cononicalising...\n");
c1.canonicalize();
log1 fprintf(Stderr,"... done canonicalising...\n");
// fprintf(Stderr,"a\n");
// for(SymmetryGroup::ElementContainer::const_iterator j=symmetryGroup.elements.begin();j!=symmetryGroup.elements.end();j++)
// {
/* IntegerVectorList normals=wallInequalities(SymmetryGroup::permutePolynomialSet(i->idealGroebnerBasis,*j));
IntegerVectorList equations=wallInequalities(SymmetryGroup::permutePolynomialSet(i->coneGroebnerBasis,*j));
PolyhedralCone c(normals,equations);
*/
// PolyhedralCone c=c1.permuted(*j);
// c.canonicalize();
c1.setMultiplicity(i->multiplicity);
ret.insert(c1);
// }
}
return ret;
}
void BergmanFan::setSimplicial(bool b)
{
simplicial=b;
}
bool BergmanFan::isSimplicial()const
{
return simplicial;
}
void BergmanFan::computeMultiplicities()
{
for(MaximalConeList::iterator i=cones.begin();i!=cones.end();i++)
i->multiplicity=multiplicity(i->coneGroebnerBasis);
//MULTIPLICITY TEST
// AsciiPrinter(Stderr).printPolynomialSet(current.coneGroebnerBasis);
// fprintf(Stderr,"MULTIPLICITY :%i\n",multiplicity(current.coneGroebnerBasis));
}
|