1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
#ifndef LINALGFLOAT_H_INCLUDED
#define LINALGFLOAT_H_INCLUDED
#include <assert.h>
#include <algorithm>
#include <vector>
#include <iostream>
#include <stdlib.h>
#define EPSILON 0.0001
#define typ double
namespace linalgfloat
{
class Vector{
int n;
std::vector<typ> data;
public:
Vector(int n_=0):
n(n_),
data(n_)
{
for(int i=0;i<n;i++)data[i]=0;
}
inline int size()const
{
return n;
}
inline typ& operator[](int n)
{
if(!(n>=0 && n<data.size()))assert(!"outOfRange(n,v.size())");
return (data[n]);
}
inline typ const& operator[](int n)const
{
if(!(n>=0 && n<data.size()))assert(!"outOfRange(n,v.size())");
return (data[n]);
}
friend Vector concatenation(Vector const &a, Vector const &b)
{
Vector ret(a.size()+b.size());
for(int i=0;i<a.size();i++)ret[i]=a[i];
for(int i=0;i<b.size();i++)ret[i+a.size()]=b[i];
return ret;
}
friend inline typ dot(Vector const &a, Vector const &b)
{
assert(a.size()==b.size());
typ ret=0;
for(int i=0;i<a.size();i++)ret+=a[i]*b[i];
return ret;
}
friend Vector operator*(typ s, const Vector& q)
{
Vector ret(q.size());
for(int i=0;i<ret.size();i++)ret[i]=s*q[i];
return ret;
}
Vector& operator+=(const Vector& q)
{
assert(q.size()==size());
for(int i=0;i<size();i++)data[i]+=q[i];
return *this;
}
Vector& operator-=(const Vector& q)
{
assert(q.size()==size());
for(int i=0;i<size();i++)data[i]-=q[i];
return *this;
}
friend std::ostream& operator<<(std::ostream& s, const Vector &v);
Vector subvector(int begin, int end)const
{
assert(begin>=0);
assert(end<=size());
assert(end>=begin);
Vector ret(end-begin);
for(int i=0;i<end-begin;i++)
ret[i]=data[begin+i];
return ret;
}
Vector& madd(typ s, const Vector& q)
{
assert(q.size()==size());
for(int i=0;i<q.size();i++)
data[i]+=s*q.data[i];
return *this;
}
bool isZero()const
{
for(int i=0;i<size();i++)
if((data[i]>EPSILON)||(data[i]<-EPSILON))return false;
return true;
}
friend class Matrix;
};
class Matrix{
int height,width;
typ *data;
public:
static inline bool isZero(typ a){return (a<EPSILON)&&(a>-EPSILON);}
class RowRef{
int rowNum;
Matrix &matrix;
public:
inline RowRef(Matrix &matrix_, int rowNum_):
rowNum(rowNum_),
matrix(matrix_)
{
}
inline typ &operator[](int j)
{
assert(j>=0);
assert(j<matrix.width);
return matrix.data[matrix.width*rowNum+j];
}
Vector toVector()
{
Vector ret(matrix.width);
for(int j=0;j<matrix.width;j++)
ret[j]=matrix.data[matrix.width*rowNum+j];
return ret;
}
void set(Vector const &v)
{
assert(v.size()==matrix.width);
for(int j=0;j<matrix.width;j++)
matrix.data[matrix.width*rowNum+j]=v[j];
}
bool isZero()const
{
for(int j=0;j<matrix.width;j++)if(!matrix.isZero(matrix.data[matrix.width*rowNum+j]))return false;
return true;
}
};
class const_RowRef{
int rowNum;
Matrix const &matrix;
public:
inline const_RowRef(const Matrix &matrix_, int rowNum_):
rowNum(rowNum_),
matrix(matrix_)
{
}
inline typ const &operator[](int j)
{
assert(j>=0);
assert(j<matrix.width);
return matrix.data[matrix.width*rowNum+j];
}
Vector toVector()
{
Vector ret(matrix.width);
for(int j=0;j<matrix.width;j++)
ret[j]=matrix.data[matrix.width*rowNum+j];
return ret;
}
bool isZero()const
{
for(int j=0;j<matrix.width;j++)if(!matrix.isZero(matrix.data[matrix.width*rowNum+j]))return false;
return true;
}
};
Matrix():
height(0),
width(0)
{
data=0;
}
Matrix(int height_, int width_):
height(height_),
width(width_)
{
data=(typ*)malloc(height*width*sizeof(typ));
// for(int i=0;i<height*width;i++)data[i]=0;
const int I=height*width;
for(int i=0;i<I;i++)data[i]=0;
//memset(data,0,sizeof(typ)*width*height);
}
Matrix(const Matrix &m):
height(m.height),
width(m.width)
{
data=(typ*)malloc(height*width*sizeof(typ));
//for(int i=0;i<height*width;i++)data[i]=m.data[i];
const int I=height*width;
for(int i=0;i<I;i++)data[i]=m.data[i];
//memcpy(data,m.data,sizeof(typ)*width*height);
}
Matrix& operator=(const Matrix& m)
{
if(this==&m)
{
return *this;
}
else
{
width=m.width;
height=m.height;
if(data)free(data);
data=(typ*)malloc(height*width*sizeof(typ));
//for(int i=0;i<height*width;i++)data[i]=m.data[i];
const int I=height*width;
for(int i=0;i<I;i++)data[i]=m.data[i];
//memcpy(data,m.data,sizeof(typ)*width*height);
return *this;
}
}
~Matrix()
{
free(data);
data=0;
}
static Matrix identity(int n);
/**
Returns the number of rows of the matrix.
*/
inline int getHeight()const
{
return height;
}
/**
Returns the number of columns of the matrix.
*/
inline int getWidth()const
{
return width;
}
inline RowRef operator[](int i)
{
assert(i>=0);
assert(i<height);
return RowRef(*this,i);
}
inline const_RowRef operator[](int i)const//should really return const_RowRef
{
assert(i>=0);
assert(i<height);
return const_RowRef(*this,i);
}
void multiplyAndAddColumn(int sourceColumn, typ scalar, int destinationColumn)
{
// for(int i=0;i<height;i++)
// (*this)[i][destinationColumn]+=scalar* (*this)[i][sourceColumn];
int width=this->width;int height=this->height;
for(int i=0;i<height;i++)
{
data[i*width+destinationColumn]+=scalar*data[i*width+sourceColumn];
}
/*
typ * __restrict source=data+sourceColumn;
typ * __restrict dest=data+destinationColumn;
for(int i=0;i<height;i++)
{
(*(dest))+=scalar*(*(source));
dest+=width;
source+=width;
}*/
}
void multiplyAndAddRow(int sourceRow, typ scalar, int destinationRow)
{
typ * __restrict source=data+width*sourceRow;
typ * __restrict dest=data+width*destinationRow;
for(int i=0;i<width;i++)
dest[i]+=scalar*source[i];
// for(int i=0;i<width;i++)
// (*this)[destinationRow][i]+=scalar* (*this)[sourceRow][i];
}
void scaleColumn(int column, typ scalar)
{
for(int i=0;i<height;i++)
(*this)[i][column]*=scalar;
}
void scaleRow(int row, typ scalar)
{
for(int i=0;i<width;i++)
(*this)[row][i]*=scalar;
}
friend std::ostream& operator<<(std::ostream& s, const Matrix &m);
friend Matrix combineOnTop(Matrix const &top, Matrix const &bottom);
Matrix transposed()const;
Matrix operator-()const;
Matrix operator*(Matrix const &b)const{assert(width==b.height);Matrix ret(height,b.width);for(int i=0;i<ret.height;i++)for(int j=0;j<ret.width;j++){typ s=0;for(int k=0;k<width;k++)s+=(*this)[i][k]*b[k][j];ret[i][j]=s;}return ret;}
/**
* Computes the dot product of the ith and jth row.
*/
inline typ rowDot(int i, int j)
{
assert(i>=0);
assert(i<getHeight());
assert(j>=0);
assert(j<getHeight());
typ ret=0;
typ *src1=data+width*i;
typ *src2=data+width*j;
for(int k=0;k<width;k++)
{
ret+=src1[k]*src2[k];
}
return ret;
}
/**
* Computes the dot product of the ith and jth row.
*/
inline typ rowDot(int i, Vector const &v)
{
assert(i>=0);
assert(i<getHeight());
assert(width==v.size());
typ ret=0;
typ *src1=data+width*i;
for(int k=0;k<width;k++)
{
ret+=src1[k]*v[k];
}
return ret;
}
/*
Computes the dot product of ith column of *this with jth row of m.
*/
inline typ rowDotColumnOfOther(int i, Matrix const &m, int j)
{
assert(i>=0);
assert(i<height);
assert(j>=0);
assert(j<m.width);
assert(width==m.height);
typ ret=0;
typ *src1=data+width*i;
typ *src2=m.data+j;
for(int k=0;k<width;k++)
{
ret+=src1[k]*(*src2);
src2+=m.width;
}
return ret;
}
int numberOfPivots()const;
int reduceAndComputeRank();
Matrix reduceAndComputeKernel();
Vector normalForm(Vector v)const;//assume reduced
Matrix normalForms(Matrix const &m)const;//assume reduced
inline void swapRows(int a, int b)
{for(int j=0;j<getWidth();j++){typ temp=(*this)[a][j];(*this)[a][j]=(*this)[b][j];(*this)[b][j]=temp;}}
/*{
assert(a>=0);
assert(b>=0);
assert(a<height);
assert(b<height);
typ *__restrict aRow=data+a*width;
typ *__restrict bRow=data+b*width;
for(int j=0;j<width;j++){typ temp=aRow[j];aRow[j]=bRow[j];bRow[j]=temp;}
}*/
int findRowIndex(int column, int currentRow)const;
inline bool nextPivot(int &i, int &j)const//;
//bool Matrix::nextPivot(int &i, int &j)const//iterates through the pivots in a matrix in reduced row echelon form. To find the first pivot put i=-1 and j=-1 and call this routine. When no more pivots are found the routine returns false.
{
i++;
if(i>=height)return false;
while(++j<width)
{
if(!isZero((*this)[i][j])) return true;
}
return false;
}
int reduce(bool returnIfZeroDeterminant);
typ reduceAndComputeDeterminant();
void cycleColumnsLeft(int offset);
void REformToRREform(bool scalePivotsToOne=false);
Matrix submatrix(int startRow, int startColumn, int endRow, int endColumn)const
{
assert(startRow>=0);
assert(startColumn>=0);
assert(endRow>=startRow);
assert(endColumn>=startColumn);
assert(endRow<=height);
assert(endColumn<=width);
Matrix ret(endRow-startRow,endColumn-startColumn);
for(int i=startRow;i<endRow;i++)
for(int j=startColumn;j<endColumn;j++)
ret[i-startRow][j-startColumn]=(*this)[i][j];
return ret;
}
void removeZeroRows();
Matrix inverse()const;
/*
Returns a matrix with those columns removed, that would not conain a pivot in a row Echelon form.
*/
Matrix reduceDimension()const;
void maddRowToVector(int row, typ scalar, Vector &v)
{
assert(width==v.size());
int offset=width*row;
for(int i=0;i<width;i++)v.data[i]+=scalar*data[offset++];
// v.madd(scalar,(*this)[row].toVector());
}
#if 0
inline unsigned char hashValue(int row, int numberOfEntriesToConsider)const
{
unsigned char ret=0;
typ *d=data+row*width;
for(int i=0;i<numberOfEntriesToConsider;i++)
ret+=((unsigned char*)(d+i))[6];
return ret;
}
#else
inline unsigned char hashValue(int row, int numberOfEntriesToConsider)const
{
int ret=0;
typ *d=data+row*width;
for(int i=0;i<numberOfEntriesToConsider;i++)
ret=((int*)(d+i))[1]+(ret>>7)+(ret<<25);
return ret+(ret>>24)+(ret>>16)+(ret>>8);
}
#endif
bool rowsAreEqual(int row1, int row2, int numberOfEntriesToConsider)
{
typ *r1=data+row1*width;
typ *r2=data+row2*width;
for(int i=0;i<numberOfEntriesToConsider;i++)
{
if(!isZero(r1[i]-r2[i]))return false;
}
return true;
}
/*
* This method transforms the set of row vectors into and orthogonal basis.
* It returns a matrix describing the change
*/
void orthogonalize()
{
assert(0);
/* Matrix ret(height,height);
int retIndex=0;
list<int> toCheck;
for(int i=0;i<getHeight();i++)
{
Vector coef(height);
for(list<int>::const_iterator j=toCheck.begin();j!=toCheck.end();j++)
this->multiplyAndAddRow(*j,-rowDot(i,*j)/rowDot(*j,*j),i);//TODO: rowDot(j,j) is computed repeatedly - fix this
if(!(*this)[i].isZero())
{
retIndex++;
toCheck.push_back(i);
}
}
removeZeroRows();
*/
}
/*
* This method assumes that rows of the matrix are orthonogal and computes
* the coefficients of the projection of v onto this basis.
*/
Vector projectionCoefficients(Vector const &v)
{
Vector ret(height);
for(int i=0;i<height;i++)ret[i]=rowDot(i,v)-rowDot(i,i);
return ret;
}
};
};
#endif
|