1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#include "multiplicity.h"
#include "lll.h"
#include "polyhedralcone.h"
#include "wallideal.h"
#include "saturation.h"
#include "linalg.h"
#include "log.h"
IntegerVector writeInTermsOf(IntegerVector const &v, IntegerMatrix const &b)
{//write the row vector v as a integer linear combination of the basis elements of the basis b. Asserts if v is not in the lattice generated by b
/* AsciiPrinter Q(Stderr);
fprintf(Stderr,"Dimensions %ix%i\n",b.getHeight(),b.getWidth());
Q.printVector(v);
Q.printVectorList(b.getRows());
*/
int m=b.getHeight();//dimension of lattice
assert(v.size()==b.getWidth());
IntegerVectorList equations=b.getRows();
equations.push_back(v);
IntegerVectorList inequalities;
inequalities.push_back(-IntegerVector::standardVector(m+1,m));
PolyhedralCone p(inequalities,rowsToIntegerMatrix(equations).transposed().getRows(),m+1);
IntegerVector w=p.getRelativeInteriorPoint();
//Q.printVector(w);
assert(w[m]==-1);
IntegerVector ret=w.subvector(0,m);
{
IntegerMatrix ret2(1,m);
ret2[0]=ret;
//fprintf(Stderr,"%i\n",(ret2*b)[0].size());
assert(((ret2*b)[0]-v).isZero());
}
/* Q.printVector(ret);
fprintf(Stderr,"Returning!!1\n");*/
return ret;
}
Polynomial notLaurent(Polynomial p)
{
if(!p.isZero())
{
IntegerVector v=p.terms.begin()->first.exponent;
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
v=min(v,i->first.exponent);
p*=Monomial(p.getRing(),-v);
}
return p;
}
Polynomial multiplicativeChangeInv(Polynomial const &p, IntegerMatrix const &lattice, PolynomialRing const &r2)
{
PolynomialRing theRing=p.getRing();
Polynomial ret(r2);
if(!p.isZero())
{
IntegerVector rel=p.terms.begin()->first.exponent;
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
ret+=Term(i->second,Monomial(r2,writeInTermsOf(i->first.exponent-rel,lattice)));
}
return ret;
}
/*
//Old implementation
PolynomialSet multiplicativeChangeInv(PolynomialSet const &g, IntegerMatrix const &lattice, PolynomialRing const &r2)
{
PolynomialRing theRing=g.getRing();
PolynomialSet ret(r2);
for(PolynomialSet::const_iterator i=g.begin();i!=g.end();i++)
ret.push_back(multiplicativeChangeInv(*i,lattice,r2));
return ret;
}
*/
PolynomialSet multiplicativeChangeInv(PolynomialSet const &g, IntegerMatrix const &lattice, PolynomialRing const &r2)
{
PolynomialRing theRing=g.getRing();
PolynomialSet ret(r2);
FieldMatrix bigMatrix=combineLeftRight(integerMatrixToFieldMatrix(lattice,Q),FieldMatrix::identity(Q,lattice.getHeight()));
bigMatrix.reduce();
FieldMatrix reducedLatticeBasis=bigMatrix.submatrix(0,0,lattice.getHeight(),lattice.getWidth());
FieldMatrix inverseMatrix=bigMatrix.submatrix(0,lattice.getWidth(),lattice.getHeight(),lattice.getWidth()+lattice.getHeight());
for(PolynomialSet::const_iterator i=g.begin();i!=g.end();i++)
{
Polynomial q(r2);
Polynomial const &p=*i;
if(!p.isZero())
{
IntegerVector rel=p.terms.begin()->first.exponent;
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
{
IntegerVector diff=i->first.exponent-rel;
FieldVector diff2=integerVectorToFieldVector(diff,Q);
FieldVector temp(Q,0);
reducedLatticeBasis.normalForm(diff2,&temp);
FieldVector temp2=temp*inverseMatrix;
q+=Term(i->second,Monomial(r2,fieldVectorToIntegerVector(temp2)));
}
}
ret.push_back(q);
}
return ret;
}
PolynomialSet notLaurent(PolynomialSet const &s)
{
PolynomialRing theRing=s.getRing();
PolynomialSet ret(theRing);
for(PolynomialSet::const_iterator i=s.begin();i!=s.end();i++)
ret.push_back(notLaurent(*i));
return ret;
}
PolynomialSet idealWithSameMultiplicity(PolynomialSet const &g)
{
PolynomialRing r1=g.getRing();
PolyhedralCone H=homogeneitySpace(g).dualCone();
H.findFacets();
IntegerVectorList a=H.getEquations();
//log3 IntegerMatrix latticeBasis=rowsToIntegerMatrix(a);
IntegerMatrix temp(H.ambientDimension(),0);
if(a.size()!=0)temp=rowsToIntegerMatrix(a).transposed();
IntegerMatrix latticeBasis=latticeKernelOfTransposed(temp);
mlll(latticeBasis);
// log3 AsciiPrinter(Stderr).printVectorList(latticeBasis.getRows());
PolynomialRing r2(r1.getField(),latticeBasis.getHeight());
return notLaurent(multiplicativeChangeInv(g,latticeBasis,r2));
}
int multiplicity(PolynomialSet const &g)
{
PolynomialSet g2=idealWithSameMultiplicity(g);
log3 AsciiPrinter(Stderr).printPolynomialSet(g2);
PolynomialSet g3=nonHomogeneousSaturation(g2);
log3 AsciiPrinter(Stderr).printPolynomialSet(g3);
return numberOfStandardMonomials(g3);
}
bool isStandard(IntegerVector const &v, PolynomialSet const &markedGroebnerBasis)
{
for(PolynomialSet::const_iterator i=markedGroebnerBasis.begin();i!=markedGroebnerBasis.end();i++)
if(i->getMarked().m.exponent.divides(v))return false;
return true;
}
int numberOfStandardMonomials(PolynomialSet const &markedGroebnerBasis)
{
int ret=0;
int n=markedGroebnerBasis.numberOfVariablesInRing();
IntegerVector v(n);
int i=0;
while(1)
{
// AsciiPrinter(Stderr).printVector(v);
if(isStandard(v,markedGroebnerBasis))
{
//AsciiPrinter(Stderr).printVector(v);
//fprintf(Stderr,"\n");
ret++;
i=n-1;
}
else
{
v[i]=0;
i--;
}
if(i==-1)break;
v[i]++;
}
return ret;
}
|