File: nbody.cpp

package info (click to toggle)
gfan 0.5%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 8,348 kB
  • ctags: 5,683
  • sloc: cpp: 39,675; makefile: 454; sh: 1
file content (290 lines) | stat: -rw-r--r-- 7,586 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include "polynomial.h"
#include "field_rationals.h"
#include "printer.h"
#include "log.h"

#include <sstream>
#include <iostream>

static int rIndex(int i, int j, int N, bool withMasses)
{
  if(j<i){i^=j;j^=i;i^=j;}
  int r=withMasses*N;
  for(int I=0;I<N;I++)
    for(int J=I+1;J<N;J++)
      {
	if((I==i)&&(J==j))return r;
	r++;
      }
  assert(0);
}

static int sIndex(int i, int j, int N, bool withMasses)
{
  return rIndex(i,j,N,withMasses)+N*(N-1)/2;
}

static Polynomial S(PolynomialRing const &r, int N, bool withMasses, int i, int j, bool withSVariables)
{
  Polynomial ret(r);
  int n=r.getNumberOfVariables();

  if(withSVariables)
    {
      ret+=Term(r.getField().zHomomorphism(1),Monomial(r,IntegerVector::standardVector(n,sIndex(i,j,N,withMasses))));
    }
  else
    {
      ret+=Term(r.getField().zHomomorphism(-1),Monomial(r,IntegerVector(n)));
      ret+=Term(r.getField().zHomomorphism(1),Monomial(r,-3*IntegerVector::standardVector(n,rIndex(i,j,N,withMasses))));
    }

  return ret;
}


static Polynomial rPolynomial(PolynomialRing const &r, int N, bool withMasses, int i, int j, int exponent=2)
{
  if(i==j)return Polynomial(r);
  return Term(r.getField().zHomomorphism(1),Monomial(r,exponent*IntegerVector::standardVector(r.getNumberOfVariables(),rIndex(i,j,N,withMasses))));
}


static vector<string> variableNames(int N, bool withMasses, bool withSVariables)
{
  vector<string> ret;

  if(withMasses)
    {
      for(int i=0;i<N;i++)
	{
	  stringstream s;
	  s<<"m"<<i+1;
	  ret.push_back(s.str());
	}
    }

  for(int i=0;i<N;i++)
    for(int j=i+1;j<N;j++)
      {
	stringstream s;
	s<<"r"<<i+1<<j+1;
	ret.push_back(s.str());
      }

  if(withSVariables)
    {
      for(int i=0;i<N;i++)
	for(int j=i+1;j<N;j++)
	  {
	    stringstream s;
	    s<<"S"<<i+1<<j+1;
	    ret.push_back(s.str());
	  }
    }

  return ret;
}


Polynomial AlbouyChencinerEquation(PolynomialRing const &r, int N, bool withMasses, int i, int j, bool symmetric, bool withSVariables, bool saturate)
{
  int n=r.getNumberOfVariables();
  Polynomial ret(r);
  for(int k=0;k<N;k++)
    {
      Term massTerm=Term(r.getField().zHomomorphism(1),Monomial(r,withMasses*IntegerVector::standardVector(n,k)));
      if(i!=k)
	ret+=massTerm*
	  (
	   S(r,N,withMasses,i,k,withSVariables)*(
		       rPolynomial(r,N,withMasses,j,k)
		       -rPolynomial(r,N,withMasses,i,k)
		       -rPolynomial(r,N,withMasses,i,j)
		       )
	   );
      if(symmetric)
	if(j!=k)
	  ret+=massTerm*
	    (
	     S(r,N,withMasses,j,k,withSVariables)*(
			 rPolynomial(r,N,withMasses,i,k)
			 -rPolynomial(r,N,withMasses,j,k)
			 -rPolynomial(r,N,withMasses,i,j)
			 )
	     );
    }
  if(saturate)ret.saturate();
  return ret;
}


PolynomialSet AlbouyChencinerEquations(int N, bool withMasses, bool symmetric, bool withSVariables, bool saturate)
{
  PolynomialRing r(Q,variableNames(N,withMasses,withSVariables));

  PolynomialSet ret(r);
  for(int i=0;i<N;i++)
    {
      if(!symmetric)
	for(int j=0;j<i;j++)
	  ret.push_back(AlbouyChencinerEquation(r,N,withMasses,i,j,symmetric,withSVariables,saturate));

      for(int j=i+1;j<N;j++)
	ret.push_back(AlbouyChencinerEquation(r,N,withMasses,i,j,symmetric,withSVariables,saturate));
    }
  return ret;
}


PolynomialSet DziobekEquations(PolynomialRing const &r, int N, bool withMasses, bool withSVariables, bool saturate)
{
  PolynomialSet ret(r);

  list<int> a;
  for(int i=4;i<N;i++)
    a.push_back(0);
  a.push_back(1);
  a.push_back(1);
  a.push_back(1);
  a.push_back(1);

  do
    {
      list<int>::const_iterator i=a.begin();
      int I=0;
      while((*i)==0){i++;I++;}
      int first=I;
      do{i++;I++;}while((*i)==0);
      int second=I;
      do{i++;I++;}while((*i)==0);
      int third=I;
      do{i++;I++;}while((*i)==0);
      int fourth=I;

      //      cerr<<first<<second<<third<<fourth;
      Polynomial f1=S(r,N,withMasses,first,second,withSVariables)*S(r,N,withMasses,third,fourth,withSVariables)-S(r,N,withMasses,first,third,withSVariables)*S(r,N,withMasses,second,fourth,withSVariables);
      if(saturate)f1.saturate();
      Polynomial f2=S(r,N,withMasses,first,third,withSVariables)*S(r,N,withMasses,second,fourth,withSVariables)-S(r,N,withMasses,first,fourth,withSVariables)*S(r,N,withMasses,second,third,withSVariables);
      if(saturate)f2.saturate();
      Polynomial f3=S(r,N,withMasses,first,second,withSVariables)*S(r,N,withMasses,third,fourth,withSVariables)-S(r,N,withMasses,first,fourth,withSVariables)*S(r,N,withMasses,second,third,withSVariables);
      if(saturate)f3.saturate();
      ret.push_back(f1);
      ret.push_back(f2);
      ret.push_back(f3);
    }
  while(next_permutation(a.begin(),a.end()));

  return ret;
}


static Polynomial mlookup(PolynomialRing const &r, int N, bool withMasses,int i,int j)
{
  if(i==j)return r.zero();
  if(i==0 || j==0)return r.one();
  return Polynomial(Term(r.getField().zHomomorphism(1),Monomial(r,2*IntegerVector::standardVector(r.getNumberOfVariables(),rIndex(i-1,j-1,N,withMasses)))));
}


PolynomialSet nbodyDeterminants(PolynomialRing const &r, int N, bool withMasses, int determinantSize)
{
  vector<int> l;

  for(int i=0;i<N+1-determinantSize;i++)
    l.push_back(1);
  for(int i=0;i<determinantSize-1;i++)
    l.push_back(0);

  PolynomialSet ret(r);

  if(determinantSize==N+2)return ret;

  do
    {
      vector<int> indexList;
      indexList.push_back(0);
      for(int i=0;i<l.size();i++)if(l[i]==0)indexList.push_back(i+1);

      log1
      {
    	  for(int A=0;A<determinantSize;A++)
    	  {
    		  for(int B=0;B<determinantSize;B++)
    			  AsciiPrinter(Stderr)<<mlookup(r,N,withMasses,indexList[A],indexList[B])<<";";
				  cerr<<endl;
    	  }
      }

      vector<int> perm;
      for(int i=0;i<indexList.size();i++)
	perm.push_back(i);

      Polynomial p(r);

      do
	{
	  Polynomial prod=r.one();
	  for(int j=0;j<perm.size();j++)
	    {
	      prod*=mlookup(r,N,withMasses,indexList[j],indexList[perm[j]]);
	    }
	  int s=1;
	  for(int x=0;x<perm.size();x++)
	    for(int y=0;y<x;y++)
	      if(perm[y]>perm[x])s*=-1;
	  if(s==1)
	    p+=prod;
	  else
	    p-=prod;
	}
      while(next_permutation(perm.begin(),perm.end()));
      ret.push_back(p);
    }
  while(prev_permutation(l.begin(),l.end()));

  return ret;
}


Polynomial massEquation(PolynomialRing const &r, int N, bool withMasses, bool saturate)
{
  Polynomial ret(r);
  for(int i=0;i<N;i++)
    for(int j=0;j<i;j++)
      {
	Polynomial mm=r.one();
	if(withMasses)mm=Polynomial(Term(r.getField().zHomomorphism(1),Monomial(r,IntegerVector::standardVector(r.getNumberOfVariables(),i)+IntegerVector::standardVector(r.getNumberOfVariables(),j))));
	ret+=(rPolynomial(r,N,withMasses,i,j,2)-rPolynomial(r,N,withMasses,i,j,-1))*mm;
      }
  if(saturate)ret.saturate();
  return ret;
}


Polynomial SEquation(PolynomialRing const &r, int N, bool withMasses, int i, int j, bool withSVariables, bool saturate=true)
{
  Polynomial ret(r);
  int n=r.getNumberOfVariables();

  ret-=Term(r.getField().zHomomorphism(1),Monomial(r,IntegerVector::standardVector(n,sIndex(i,j,N,withMasses))));

  ret+=Term(r.getField().zHomomorphism(-1),Monomial(r,IntegerVector(n)));
  ret+=Term(r.getField().zHomomorphism(1),Monomial(r,-3*IntegerVector::standardVector(n,rIndex(i,j,N,withMasses))));

  if(saturate)ret.saturate();

  return ret;
}


PolynomialSet SEquations(PolynomialRing const &r, int N, bool withMasses, bool saturate)
{
  PolynomialSet ret(r);
  for(int i=0;i<N;i++)
    for(int j=0;j<i;j++)
      {
	ret.push_back(SEquation(r,N,withMasses,i,j,true,saturate));
      }
  return ret;
}