1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
|
#include "polyhedralcone.h"
#include "lp.h"
#include "subspace.h"
#include "symmetry.h"
#include "polymakefile.h"
#include "wallideal.h"
#include <sstream>
#include "triangulation.h"
#include "linalg.h"
#include "linalgfloat.h"
#include "continuedfractions.h"
#include "log.h"
//--------------------------------
// PolyhedralCone
//--------------------------------
static bool compareIntegerLists(IntegerVectorList const &a, IntegerVectorList const &b)
{
assert(a.size()==b.size());
IntegerVectorList::const_iterator B=b.begin();
for(IntegerVectorList::const_iterator A=a.begin();A!=a.end();A++)
{
if(LexicographicTermOrder()(*A,*B))return true;
if(LexicographicTermOrder()(*B,*A))return false;
B++;
}
return false;
}
bool operator<(PolyhedralCone const &a, PolyhedralCone const &b)
{
assert(a.state>=3);
assert(b.state>=3);
if(a.dimension()>b.dimension())return true;//INVERTED
if(a.dimension()<b.dimension())return false;//INVERTED
if(a.equations.size()<b.equations.size())return true;
if(a.equations.size()>b.equations.size())return false;
if(a.n<b.n)return true;
if(a.n>b.n)return false;
if(a.inequalities.size()<b.inequalities.size())return true;
if(a.inequalities.size()>b.inequalities.size())return false;
if(compareIntegerLists(a.equations,b.equations))return true;
if(compareIntegerLists(b.equations,a.equations))return false;
if(compareIntegerLists(a.inequalities,b.inequalities))return true;
if(compareIntegerLists(b.inequalities,a.inequalities))return false;
return false;
}
bool operator!=(PolyhedralCone const &a, PolyhedralCone const &b)
{
return (a<b)||(b<a);
}
void PolyhedralCone::ensureStateAsMinimum(int s)
{
if((state<1) && (s==1))
{
//log0 cerr<<"Number of inequalities: "<<halfSpaces.size()<<" Number of equations: "<<equations.size()<<endl;
/* if(inequalities.size()==0)
{
equations=subsetBasis(equations);
}
else*/
{
IntegerMatrix temp=rowsToIntegerMatrix(equations,n);
FieldMatrix m=integerMatrixToFieldMatrix(temp,Q);
m.reduce();
m.removeZeroRows();
IntegerVectorList newInequalities;
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
FieldVector w=integerVectorToFieldVector(*i,Q);
w=m.canonicalize(w);
if(!w.isZero())
newInequalities.push_back(w.primitive());
}
inequalities=newInequalities;
removeDuplicates(inequalities);
equations=fieldMatrixToIntegerMatrixPrimitive(m).getRows();
}
// log0 cerr<<"Number of inequalities: "<<halfSpaces.size()<<" Number of equations: "<<equations.size()<<endl;
// log0 fprintf(Stderr,"+\n");
if(!(preassumptions&PCP_impliedEquationsKnown))
if(inequalities.size()>1)//there can be no implied equation unless we have at least two inequalities
removeRedundantRows(&inequalities,&equations,false);
//log0 cerr<<"Number of inequalities: "<<halfSpaces.size()<<" Number of equations: "<<equations.size()<<endl;
//log0 fprintf(Stderr,"+\n");
}
if((state<2) && (s>=2) && !(preassumptions&PCP_facetsKnown))
{
// halfSpaces.sort();
// AsciiPrinter(Stderr).printVectorList(halfSpaces);
if(inequalities.size()>25)
// if(0)
{
IntegerVectorList h1;
IntegerVectorList h2;
bool a=false;
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
if(a)
h1.push_back(*i);
else
h2.push_back(*i);
a=!a;
}
PolyhedralCone c1(h1,equations);
PolyhedralCone c2(h2,equations);
c1.ensureStateAsMinimum(2);
c2.ensureStateAsMinimum(2);
inequalities=c1.inequalities;
for(IntegerVectorList::const_iterator i=c2.inequalities.begin();i!=c2.inequalities.end();i++)
inequalities.push_back(*i);
}
// fprintf(Stderr,"Number half spaces: %i, number of equations: %i\n",halfSpaces.size(),equations.size());
if(equations.size())
{
FieldMatrix equationSpace=integerMatrixToFieldMatrix(rowsToIntegerMatrix(equations,n),Q);
equationSpace.reduce();
IntegerVectorList halfSpaces2;
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
halfSpaces2.push_back(equationSpace.canonicalize(integerVectorToFieldVector(*i,Q)).primitive());
}
for(IntegerVectorList::const_iterator i=halfSpaces2.begin();i!=halfSpaces2.end();i++)
if((i->max()>1000) || (i->min()<-1000))goto fallBack;//more overflows caught in lp_cdd.
inequalities=fastNormals(halfSpaces2);
goto noFallBack;
fallBack:
removeRedundantRows(&inequalities,&equations,true);
noFallBack:;
}
else
inequalities=fastNormals(inequalities);
// fprintf(Stderr,"done\n");
}
if((state<3) && (s>=3))
{
// fprintf(Stderr,"Number half spaces: %i, number of equations: %i\n",halfSpaces.size(),equations.size());
// log1 fprintf(Stderr,"Computing subspace...\n");
Subspace v(equations,n);
equations=v.getRepresentation();
// log1 fprintf(Stderr,"...done computing subspace.\n");
for(IntegerVectorList::iterator i=inequalities.begin();i!=inequalities.end();i++)
{
*i=v.canonicalizeVector(*i);
}
inequalities.sort();
//fprintf(Stderr,"done\n");
}
state=s;
}
void PolyhedralCone::canonicalize()
{
ensureStateAsMinimum(3);
}
void PolyhedralCone::findFacets()
{
ensureStateAsMinimum(2);
}
void PolyhedralCone::findImpliedEquations()
{
ensureStateAsMinimum(1);
}
/*PolyhedralCone::PolyhedralCone(IntegerVectorList const &halfSpaces_, IntegerVectorList const &equations_, int ambientDimension, int state):
inequalities(halfSpaces_),
equations(equations_),
state(0),
multiplicity(1),
n(ambientDimension)
{
this->state=state;
}
*/
PolyhedralCone::PolyhedralCone(int ambientDimension):
n(ambientDimension),
state(1),
preassumptions(PCP_impliedEquationsKnown|PCP_facetsKnown),
multiplicity(1),
haveExtremeRaysBeenCached(false)
{
}
PolyhedralCone::PolyhedralCone(IntegerVectorList const &halfSpaces_, IntegerVectorList const &equations_, int ambientDimension, int preassumptions_):
//PolyhedralCone::PolyhedralCone(IntegerVectorList const &halfSpaces_, IntegerVectorList const &equations_, int ambientDimension):
inequalities(halfSpaces_),
equations(equations_),
// equations(subsetBasis(equations_)),
state(0),
preassumptions(preassumptions_),
multiplicity(1),
haveExtremeRaysBeenCached(false)
{
n=ambientDimension;
if(n==-1)
{
if(!halfSpaces_.empty())
n=halfSpaces_.begin()->size();
else if(!equations_.empty())
n=equations_.begin()->size();
else
{
assert(0);
}
}
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
assert(i->size()==n);
}
for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)
{
/*AsciiPrinter P(Stderr);
P.printString("FJDSKFJA\n");
P.printVector(*i);
*/
assert(i->size()==n);
}
ensureStateAsMinimum(1);
// computeAndReduceLinearitySpace();
}
IntegerVector PolyhedralCone::getRelativeInteriorPoint()const
{
// ensureStateAsMinimum(1);
assert(state>=1);
IntegerVector ret;
IntegerVectorList g=equations;
int numberOfEqualities=g.size();
g.insert(g.end(),inequalities.begin(),inequalities.end());
IntegerVector equalitySet(g.size());
for(int i=0;i<numberOfEqualities;i++)equalitySet[i]=1;
if(!g.empty())
ret=relativeInteriorPoint(ambientDimension(),g,&equalitySet);
else
ret=IntegerVector(n);//cone is the full space, lp code would fail, since the dimension is unknown
for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)
{
assert(dotLong(*i,ret)==0);
}
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
if(!(dotLong(*i,ret)>0))
{
fprintf(Stderr,"PolyhedralCone::relativeInteriorPoint() : halfSpaces not reduced or mistake in cdd interface!!!\n");
}
}
return ret;
}
IntegerVectorList PolyhedralCone::getHalfSpaces()const
{
return inequalities;
}
const IntegerVectorList &PolyhedralCone::getEquations()const
{
assert(state>=1);
return equations;
}
IntegerVectorList PolyhedralCone::generatorsOfSpan()const
{
assert(isInStateMinimum(1));
IntegerVectorList empty;
PolyhedralCone temp(empty,getEquations(),n);
return temp.dualCone().getEquations();
}
IntegerVectorList PolyhedralCone::generatorsOfLinealitySpace()const
{
IntegerVectorList l=equations;
l.insert(l.end(),inequalities.begin(),inequalities.end());
FieldMatrix L=integerMatrixToFieldMatrix(rowsToIntegerMatrix(l,ambientDimension()),Q);
return fieldMatrixToIntegerMatrixPrimitive(L.reduceAndComputeKernel()).getRows();
// return linealitySpace().generatorsOfSpan();
}
int PolyhedralCone::ambientDimension()const
{
return n;
}
int PolyhedralCone::codimension()const
{
return ambientDimension()-dimension();
// return getEquations().size();
}
int PolyhedralCone::dimension()const
{
assert(state>=1);
// ensureStateAsMinimum(1);
return ambientDimension()-equations.size();
}
bool PolyhedralCone::isZero()const
{
return dimension()==0;
}
bool PolyhedralCone::isFullSpace()const
{
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
if(!i->isZero())return false;
for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)
if(!i->isZero())return false;
return true;
}
PolyhedralCone intersection(const PolyhedralCone &a, const PolyhedralCone &b)
{
assert(a.ambientDimension()==b.ambientDimension());
IntegerVectorList inequalities=a.inequalities;
inequalities.insert(inequalities.end(),b.inequalities.begin(),b.inequalities.end());
IntegerVectorList equations=a.equations;
equations.insert(equations.end(),b.equations.begin(),b.equations.end());
{
removeDuplicates(equations);
removeDuplicates(inequalities);
IntegerVectorList Aequations=a.equations;
IntegerVectorList Ainequalities=a.inequalities;
removeDuplicates(Aequations);
removeDuplicates(Ainequalities);
if((Ainequalities.size()==inequalities.size()) && (Aequations.size()==equations.size()))return a;
IntegerVectorList Bequations=b.equations;
IntegerVectorList Binequalities=b.inequalities;
removeDuplicates(Bequations);
removeDuplicates(Binequalities);
if((Binequalities.size()==inequalities.size()) && (Bequations.size()==equations.size()))return b;
}
return PolyhedralCone(inequalities,equations,a.ambientDimension());
}
PolyhedralCone product(const PolyhedralCone &a, const PolyhedralCone &b)
{
IntegerVectorList equations2;
IntegerVectorList inequalities2;
int n1=a.n;
int n2=b.n;
for(IntegerVectorList::const_iterator i=a.equations.begin();i!=a.equations.end();i++)
equations2.push_back(concatenation(*i,IntegerVector(n2)));
for(IntegerVectorList::const_iterator i=b.equations.begin();i!=b.equations.end();i++)
equations2.push_back(concatenation(IntegerVector(n1),*i));
for(IntegerVectorList::const_iterator i=a.inequalities.begin();i!=a.inequalities.end();i++)
inequalities2.push_back(concatenation(*i,IntegerVector(n2)));
for(IntegerVectorList::const_iterator i=b.inequalities.begin();i!=b.inequalities.end();i++)
inequalities2.push_back(concatenation(IntegerVector(n1),*i));
PolyhedralCone ret(inequalities2,equations2,n1+n2);
ret.setMultiplicity(a.getMultiplicity()*b.getMultiplicity());
ret.setLinearForm(concatenation(a.getLinearForm(),b.getLinearForm()));
ret.ensureStateAsMinimum(a.state);
ret.ensureStateAsMinimum(b.state);
return ret;
}
PolyhedralCone PolyhedralCone::positiveOrthant(int dimension)
{
IntegerVectorList halfSpaces;
for(int i=0;i<dimension;i++)halfSpaces.push_back(IntegerVector::standardVector(dimension,i));
IntegerVectorList empty;
return PolyhedralCone(halfSpaces,empty,dimension);
}
bool PolyhedralCone::isInStateMinimum(int s)const
{
return state>=s;
}
int PolyhedralCone::getState()const
{
return state;
}
void PolyhedralCone::print(class Printer *p, bool xml)const
{
if(0)
{
p->printString("Printing PolyhedralCone");
p->printNewLine();
p->printString("Ambient dimension: ");
p->printInteger(n);
p->printNewLine();
if(isInStateMinimum(1))
{
p->printString("Dimension: ");
p->printInteger(dimension());
p->printNewLine();
}
p->printString("Linearity space:");
// p->printNewLine();
p->printVectorList(equations);
p->printString("Inequalities:");
p->printVectorList(inequalities);
p->printString("Relative interior point:\n");
p->printVector(getRelativeInteriorPoint());
p->printNewLine();
p->printString("Done printing PolyhedralCone.");
p->printNewLine();
}
else
{
PolymakeFile polymakeFile;
polymakeFile.create("NONAME","PolyhedralCone","PolyhedralCone",xml);
polymakeFile.writeCardinalProperty("AMBIENT_DIM",n);
if(isInStateMinimum(1))
{
polymakeFile.writeCardinalProperty("DIM",dimension());
//need to check that the following is done correctly
// polymakeFile.writeCardinalProperty("LINEALITY_DIM",dimensionOfLinealitySpace());
polymakeFile.writeMatrixProperty("IMPLIED_EQUATIONS",rowsToIntegerMatrix(equations,n));
}
polymakeFile.writeCardinalProperty("LINEALITY_DIM",dimensionOfLinealitySpace());
polymakeFile.writeMatrixProperty("LINEALITY_SPACE",rowsToIntegerMatrix(linealitySpace().dualCone().getEquations(),n));
if(isInStateMinimum(2))
polymakeFile.writeMatrixProperty("FACETS",rowsToIntegerMatrix(inequalities,n));
else
polymakeFile.writeMatrixProperty("INEQUALITIES",rowsToIntegerMatrix(inequalities,n));
polymakeFile.writeCardinalVectorProperty("RELATIVE_INTERIOR_POINT",getRelativeInteriorPoint());
stringstream s;
polymakeFile.writeStream(s);
string S=s.str();
p->printString(S.c_str());
}
}
static IntegerVector dehomogenize(IntegerVector const &v)
{
assert(v.size()>0);
IntegerVector ret(v.size()-1);
for(int i=0;i<v.size()-1;i++)ret[i]=v[i];
return ret;
}
static IntegerVectorList dehomogenize(IntegerVectorList const &l)
{
IntegerVectorList ret;
for(IntegerVectorList::const_iterator i=l.begin();i!=l.end();i++)
{
ret.push_back(dehomogenize(*i));
}
return ret;
}
PolyhedralCone PolyhedralCone::withLastCoordinateRemoved()const
{
assert(n>0);
return PolyhedralCone(dehomogenize(inequalities),dehomogenize(equations));
}
bool PolyhedralCone::containsPositiveVector()const
{
PolyhedralCone temp=intersection(*this,PolyhedralCone::positiveOrthant(n));
IntegerVector v=temp.getRelativeInteriorPoint();
return v.isPositive();
}
int PolyhedralCone::dimensionOfLinealitySpace()const
{
if(inequalities.empty())return dimension();
IntegerVectorList a;
PolyhedralCone temp(a,inequalities);
temp=intersection(temp,*this);
return temp.dimension();
}
bool PolyhedralCone::contains(IntegerVector const &v)const
{
for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)
{
if(dotLong(*i,v)!=0)return false;
}
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
if(dotLong(*i,v)<0)return false;
}
return true;
}
bool PolyhedralCone::contains(IntegerVectorList const &l)const
{
for(IntegerVectorList::const_iterator i=l.begin();i!=l.end();i++)
if(!contains(*i))return false;
return true;
}
bool PolyhedralCone::contains(PolyhedralCone const &c)const
{
PolyhedralCone c2=intersection(*this,c);
PolyhedralCone c3=c;
c2.canonicalize();
c3.canonicalize();
return !(c2!=c3);
}
bool PolyhedralCone::containsRelatively(IntegerVector const &v)const
{
assert(state>=1);
for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)
{
if(dotLong(*i,v)!=0)return false;
}
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
if(dotLong(*i,v)<=0)return false;
}
return true;
}
PolyhedralCone PolyhedralCone::permuted(IntegerVector const &v)const
{
PolyhedralCone ret(SymmetryGroup::permuteIntegerVectorList(inequalities,v),SymmetryGroup::permuteIntegerVectorList(equations,v),n);
if(state>=1)ret.state=1;
if(state>=2)ret.state=2;
ret.ensureStateAsMinimum(state);
ret.setMultiplicity(multiplicity);
return ret;
}
IntegerVector PolyhedralCone::getUniquePoint()const
{
IntegerVectorList rays=extremeRays();
IntegerVector ret(n);
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
ret+=*i;
assert(containsRelatively(ret));//remove this check later
return ret;
}
IntegerVector PolyhedralCone::getUniquePointFromExtremeRays(IntegerVectorList const &extremeRays)const
{
IntegerVector ret(n);
for(IntegerVectorList::const_iterator i=extremeRays.begin();i!=extremeRays.end();i++)
if(contains(*i))ret+=*i;
return ret;
}
/**
* Returns a primitive vector parallel to the projection of v onto the orthogonal complement of E.
*/
static IntegerVector primitiveProjection(IntegerVectorList const &E, IntegerVector &v, bool useFloat)
{
int n=v.size();
if(useFloat)
{
IntegerMatrix E2=rowsToIntegerMatrix(E,n);
linalgfloat::Matrix E3(E.size(),n);
for(int i=0;i<E3.getHeight();i++)
for(int j=0;j<E3.getWidth();j++)
E3[i][j]=E2[i][j];
cerr<<E3;
E3.orthogonalize();
linalgfloat::Vector v2(n);
for(int i=0;i<n;i++)v2[i]=v[i];
cerr<<E3;
linalgfloat::Vector coefficients=E3.projectionCoefficients(v2);
cerr<<coefficients<<"\n";
vector<double> temp(coefficients.size());
for(int i=0;i<coefficients.size();i++)temp[i]=coefficients[i];
vector<int> tempInt(coefficients.size());
int denominator;
doubleVectorToFractions(temp, tempInt, denominator);
IntegerVector tempInt2(tempInt.size());for(int i=0;i<tempInt.size();i++)tempInt2[i]=tempInt[i];
if(tempInt2.max()>1000)goto fallback;
if(tempInt2.min()<-1000)goto fallback;
if(denominator>1000)goto fallback;
if(denominator<-1000)goto fallback;
IntegerVector ret=denominator*v;
int I=0;
for(IntegerVectorList::const_iterator i=E.begin();i!=E.end();i++,I++)ret-=coefficients[I]*(*i);
if(!E2.inKernel(ret))goto fallback;
return normalized(ret);
}
fallback:
debug<<"FLOATCONELINALG FALLBACK\n";
IntegerVectorList inequalities;
inequalities.push_back(v);
FieldMatrix linealitySpaceOrth=combineOnTop(integerMatrixToFieldMatrix(rowsToIntegerMatrix(E,n),Q),integerMatrixToFieldMatrix(rowsToIntegerMatrix(inequalities,n),Q));
FieldMatrix temp=combineOnTop(linealitySpaceOrth.reduceAndComputeKernel(),integerMatrixToFieldMatrix(rowsToIntegerMatrix(E,n),Q));
FieldMatrix temp2=temp.reduceAndComputeKernel();
assert(temp2.getHeight()==1);
return temp2[0].primitive();
}
IntegerVectorList PolyhedralCone::extremeRays(IntegerVectorList const *generatorsOfLinealitySpace)const
{
assert((dimension()==ambientDimension()) || (state>=3));
if(haveExtremeRaysBeenCached)return cachedExtremeRays;
// this->print(&debug);
/* This code actually works even for lower dimensional cones if they have been canonicalized. */
// AsciiPrinter(Stderr).printVectorList(halfSpaces);
// AsciiPrinter(Stderr).printVectorList(equations);
IntegerVectorList ret;
// log0 fprintf(Stderr,"calling double description (cddlib)\n");
IntegerVectorList indices=extremeRaysInequalityIndices(inequalities);
// log0 fprintf(Stderr,"returning\n");
// log0 fprintf(Stderr,"computing relative interior points\n");
// debug<<"INDICES"<<indices;
for(IntegerVectorList::const_iterator i=indices.begin();i!=indices.end();i++)
{
// log0 AsciiPrinter(Stderr)<<*i;
if(1)
{
/* At this point we know lineality space, implied equations and
also inequalities for the ray. To construct a vector on the
ray which is stable under (or indendent of) angle and
linarity preserving transformation we find the dimension 1
subspace orthorgonal to the implied equations and the
lineality space and pick a suitable primitive generator */
/* To be more precise,
* let E be the set of equations, and v the inequality defining a ray R.
* We wish to find a vector satisfying these, but it must also be orthogonal
* to the lineality space of the cone, that is, in the span of {E,v}.
* One way to get such a vector is to project v to E an get a vector p.
* Then v-p is in the span of {E,v} by construction.
* The vector v-p is also in the orthogonal complement to E by construction,
* that is, the span of R.
* We wish to argue that it is not zero.
* That would imply that v=p, meaning that v is in the span of the equations.
* However, that would contradict that R is a ray.
* In case v-p does not satisfy the inequality v (is this possible?), we change the sign.
*
* As a consequence we need the following procedure
* primitiveProjection():
* Input: E,v
* Output: A primitive representation of the vector v-p, where p is the projection of v onto E
*
* Notice that the output is a Q linear combination of the input and that p is
* a linear combination of E. The check that p has been computed correctly,
* it suffices to check that v-p satisfies the equations E.
* The routine will actually first compute a multiple of v-p.
* It will do this using floating point arithmetics. It will then transform
* the coefficients to get the multiple of v-p into integers. Then it
* verifies in exact arithmetics, that with these coefficients we get a point
* satisfying E. It then returns the primitive vector on the ray v-p.
* In case of a failure it falls back to an implementation using rational arithmetics.
*/
IntegerVector asVector(inequalities.size());
// log0 AsciiPrinter(Stderr)<<asVector;
for(int j=0;j<i->size();j++)asVector[(*i)[j]]=1;
// log0 AsciiPrinter(Stderr)<<asVector;
IntegerVectorList equations=this->equations;
IntegerVectorList inequalities;
IntegerVector theInequality;
// log0 AsciiPrinter(Stderr)<<inequalities;
IntegerVectorList::const_iterator a=this->inequalities.begin();
for(int j=0;j<asVector.size();j++,a++)
if(asVector[j])
equations.push_back(*a);
else
theInequality=*a;
assert(!theInequality.isZero());
IntegerVector thePrimitiveVector;
if(generatorsOfLinealitySpace)
{
IntegerMatrix temp=rowsToIntegerMatrix(equations,n);
temp.append(rowsToIntegerMatrix(*generatorsOfLinealitySpace,n));
// debug<<*generatorsOfLinealitySpace;
// debug.printVectorList(temp.getRows());
thePrimitiveVector=vectorInKernel(temp);
}
else
{
//log0 AsciiPrinter(Stderr)<<equations;
/* {
IntegerVectorList equations2=this->equations;
for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)equations2.push_back(*i);
debug<<primitiveProjection(equations2,theInequality,true)<<"\n";
debug<<primitiveProjection(equations2,theInequality,false)<<"\n";
}
*/
/** TODO: These calls are slow, but used often in the symmetric traversal. Maybe they should be done in floating point somehow.*/
FieldMatrix linealitySpaceOrth=combineOnTop(integerMatrixToFieldMatrix(rowsToIntegerMatrix(this->equations,n),Q),integerMatrixToFieldMatrix(rowsToIntegerMatrix(this->inequalities,n),Q));
FieldMatrix temp=combineOnTop(linealitySpaceOrth.reduceAndComputeKernel(),integerMatrixToFieldMatrix(rowsToIntegerMatrix(equations,n),Q));
FieldMatrix temp2=temp.reduceAndComputeKernel();
assert(temp2.getHeight()==1);
thePrimitiveVector=temp2[0].primitive();
// debug<<thePrimitiveVector<<"\n";
}
if(!contains(thePrimitiveVector))thePrimitiveVector=-thePrimitiveVector;
ret.push_back(thePrimitiveVector);
}
else
{
/* IntegerVectorList equations;
for(int j=0;j<i->size();j++)
{
IntegerVectorList::const_iterator a=halfSpaces.begin();
for(int k=0;k<(*i)[j];k++)
{
assert(a!=halfSpaces.end());
a++;
}
assert(a!=halfSpaces.end());
equations.push_back(*a);
}*/
IntegerVector asVector(inequalities.size());
for(int j=0;j<i->size();j++)asVector[(*i)[j]]=1;
IntegerVectorList equations=this->equations;
IntegerVectorList inequalities;
IntegerVectorList::const_iterator a=inequalities.begin();
for(int j=0;j<asVector.size();j++,a++)
if(asVector[j])
equations.push_back(*a);
else
inequalities.push_back(*a);
//log0 fprintf(Stderr,"Equations %i, HalfSpaces: %i\n",equations.size(),inequalities.size());
IntegerVector u=PolyhedralCone(inequalities,equations).getRelativeInteriorPoint();
if(!u.isZero())
ret.push_back(u);
else
{
log2 fprintf(Stderr,"Remember to fix cdd double description interface\n");
}
}
}
// log0 fprintf(Stderr,"done computing relative interior points\n");
/* //triangulation method. Keep this code.
{
IntegerMatrix temp=rowsToIntegerMatrix(halfSpaces);
log0 fprintf(Stderr,"calling double description (triangulation)\n");
IntegerVectorList ret2=Triangulation::normals(temp);
log0 fprintf(Stderr,"returning\n");
return ret2;
AsciiPrinter(Stderr).printVectorList(halfSpaces);
AsciiPrinter(Stderr).printVectorList(equations);
fprintf(Stderr,"dim:%i\n",dimension());
//ret.sort();
AsciiPrinter(Stderr).printVectorList(ret);
// AsciiPrinter(Stderr).printVectorList(fastNormals(ret2));
AsciiPrinter(Stderr).printVectorList(ret2);
fprintf(stderr,"-----------------------\n");
}
*/
cachedExtremeRays=ret;
haveExtremeRaysBeenCached=true;
return ret;
}
bool PolyhedralCone::isSimplicial()const
{
assert(state>=2);
// ensureStateAsMinimum(2);
// AsciiPrinter P(Stderr);
// print(&P);
return codimension()+getHalfSpaces().size()+dimensionOfLinealitySpace()==n;
}
bool PolyhedralCone::checkDual(PolyhedralCone const &c)const
{
assert(dimensionOfLinealitySpace()+c.dimension()==ambientDimension());
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
{
assert(c.contains(*i));
}
for(IntegerVectorList::const_iterator i=equations.begin();i!=equations.end();i++)
{
assert(c.contains(*i));
}
return true;
}
PolyhedralCone PolyhedralCone::dualCone()const
{
assert(state>=1);
IntegerVectorList dualInequalities,dualEquations;
dual(ambientDimension(),inequalities,equations,&dualInequalities,&dualEquations);
PolyhedralCone ret(dualInequalities,dualEquations);
ret.ensureStateAsMinimum(state);
// ret.canonicalize();
assert(checkDual(ret));
assert(ret.checkDual(*this));
return ret;
}
PolyhedralCone PolyhedralCone::negated()const
{
IntegerVectorList inequalities2;
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)inequalities2.push_back(-*i);
// PolyhedralCone ret(inequalities2,equations,n);
PolyhedralCone ret(inequalities2,equations,n,(areFacetsKnown()?PCP_facetsKnown:0)|(areImpliedEquationsKnown()?PCP_impliedEquationsKnown:0));
ret.ensureStateAsMinimum(state);
return ret;
}
PolyhedralCone PolyhedralCone::linealitySpace()const
{
IntegerVectorList l1=getEquations();
IntegerVectorList l2=getHalfSpaces();
l1.splice(l1.begin(),l2);
IntegerVectorList temp;
PolyhedralCone ret(temp,l1,n);
ret.ensureStateAsMinimum(state);
return ret;
}
int PolyhedralCone::getMultiplicity()const
{
return multiplicity;
}
void PolyhedralCone::setMultiplicity(int m)
{
multiplicity=m;
}
IntegerVectorList PolyhedralCone::quotientLatticeBasis()const
{
assert(isInStateMinimum(1));// Implied equations must have been computed in order to know the span of the cone
int a=equations.size();
int b=inequalities.size();
// Implementation below could be moved to nonLP part of code.
// small vector space defined by a+b equations.... big by a equations.
FieldMatrix M=combineLeftRight(combineLeftRight(
integerMatrixToFieldMatrix(rowsToIntegerMatrix(equations,n),Q).transposed(),
integerMatrixToFieldMatrix(rowsToIntegerMatrix(inequalities,n),Q).transposed()),
FieldMatrix::identity(Q,n));
M.reduce(false,true);
/*
[A|B|I] is reduced to [A'|B'|C'] meaning [A'|B']=C'[A|B] and A'=C'A.
[A'|B'] is in row echelon form, implying that the rows of C' corresponding to zero rows
of [A'|B'] generate the lattice cokernel of [A|B] - that is the linealityspace intersected with Z^n.
[A'] is in row echelon form, implying that the rows of C' corresponding to zero rows of [A'] generate
the lattice cokernel of [A] - that is the span of the cone intersected with Z^n.
It is clear that the second row set is a superset of the first. Their difference is a basis for the quotient.
*/
IntegerVectorList ret;
for(int i=0;i<M.getHeight();i++)
if(M[i].subvector(0,a).isZero()&&!M[i].subvector(a,a+b).isZero())
{
ret.push_back(fieldVectorToIntegerVector(M[i].subvector(a+b,a+b+n)));
}
return ret;
}
IntegerVector PolyhedralCone::semiGroupGeneratorOfRay()const
{
IntegerVectorList temp=quotientLatticeBasis();
assert(temp.size()==1);
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
if(dotLong(temp.front(),*i)<0)
{
temp.front()=-temp.front();
break;
}
return temp.front();
}
IntegerVector const &PolyhedralCone::getLinearForm()const
{
return linearForm;
}
void PolyhedralCone::setLinearForm(IntegerVector const &linearForm_)
{
linearForm=linearForm_;
}
PolyhedralCone PolyhedralCone::link(IntegerVector const &w)const
{
/*
* Observe that the inequalities giving rise to facets
* also give facets in the link, if they are kept as
* inequalities. This means that the state cannot decrease when taking links.
*
*/
// assert(state>=3);
IntegerVectorList inequalities2;
for(IntegerVectorList::const_iterator j=inequalities.begin();j!=inequalities.end();j++)
if(dotLong(w,*j)==0)inequalities2.push_back(*j);
// PolyhedralCone C(inequalities2,getEquations(),n);
// C.canonicalize();
// PolyhedralCone C(inequalities2,getEquations(),n,state);//STATE-----------------------------------------------------
PolyhedralCone C(inequalities2,getEquations(),n,(areImpliedEquationsKnown()?PCP_impliedEquationsKnown:0)|(areFacetsKnown()?PCP_facetsKnown:0));
C.ensureStateAsMinimum(state);
C.setLinearForm(getLinearForm());
C.setMultiplicity(getMultiplicity());
return C;
}
PolyhedralCone PolyhedralCone::givenByRays(IntegerVectorList const &generators, IntegerVectorList const &linealitySpace, int n)
{
//rewrite modulo lineality space
IntegerVectorList newGenerators=generators;
{
Subspace l(linealitySpace,n);
for(IntegerVectorList::const_iterator i=generators.begin();i!=generators.end();i++)
newGenerators.push_back(l.canonicalizeVector(*i));
}
PolyhedralCone dual(newGenerators,linealitySpace,n);
dual.findFacets();
dual.canonicalize();
IntegerVectorList inequalities=dual.extremeRays();
IntegerVectorList span=generators;
for(IntegerVectorList::const_iterator i=linealitySpace.begin();i!=linealitySpace.end();i++)span.push_back(*i);
FieldMatrix m2Q=integerMatrixToFieldMatrix(rowsToIntegerMatrix(span,n),Q);
IntegerVectorList equations=fieldMatrixToIntegerMatrixPrimitive(m2Q.reduceAndComputeKernel()).getRows();
return PolyhedralCone(inequalities,equations,n);
}
FieldElement PolyhedralCone::volume()const
{
AsciiPrinter P(Stderr);
PolyhedralCone Ctemp=intersection(*this,this->linealitySpace().dualCone());
Ctemp.canonicalize();
cerr<<"testestests";
IntegerVectorList eq2=rowsToIntegerMatrix(Ctemp.equations,n).transposed().getRows();
eq2.push_front(IntegerVector(Ctemp.equations.size()));
eq2=rowsToIntegerMatrix(eq2).transposed().getRows();
cerr<<"testestests2";
IntegerVectorList in2=rowsToIntegerMatrix(Ctemp.inequalities,n).transposed().getRows();
in2.push_front(IntegerVector(Ctemp.inequalities.size()));
in2=rowsToIntegerMatrix(in2).transposed().getRows();
for(int i=0;i<n;i++)
{
in2.push_back(IntegerVector::standardVector(n+1,i+1)+IntegerVector::standardVector(n+1,0));
//in2.push_back(-IntegerVector::standardVector(n+1,i+1)+IntegerVector::standardVector(n+1,0));
}
PolyhedralCone lifted(in2,eq2,n+1);
lifted.canonicalize();
IntegerMatrix A=rowsToIntegerMatrix(lifted.extremeRays()).transposed();//points are columns
cerr << "height " << A.getHeight() << " width" <<A.getWidth()<<endl;
P<<A.transposed().getRows();
FieldMatrix A2(Q,A.getHeight()-1,A.getWidth());
for(int i=0;i<A.getHeight()-1;i++)
{
A2[i]=integerVectorToFieldVector(A[i+1],Q)/integerVectorToFieldVector(A[0],Q);
}
A2=A2.transposed();//Now points are rows
P<<"Triangulating\n";
list<Triangulation::Cone> T=Triangulation::triangulate(A.transposed(),true);//revlex
P<<"Done triangulating\n";
FieldElement ret(Q);
for(list<Triangulation::Cone>::const_iterator i=T.begin();i!=T.end();i++)
{
FieldMatrix S=A2.submatrixRows(*i);
FieldMatrix S1(Q,S.getHeight()-1,S.getWidth());
for(int j=0;j<S1.getHeight();j++)
S1[j]=S[j+1]-S[0];
FieldMatrix S2=S1*(S1.transposed());
FieldElement square=S2.reduceAndComputeDeterminant();
// ret+=square.squareroot();
}
return ret;
}
#include "halfopencone.h"
bool PolyhedralCone::hasFace(PolyhedralCone const &f)const
{
if(!contains(f))return false;
IntegerVectorList linealitySpace=this->linealitySpace().dualCone().getEquations();
IntegerVectorList rays=extremeRays();
for(IntegerVectorList::const_iterator i=linealitySpace.begin();i!=linealitySpace.end();i++)
if(!f.contains(*i))return false;
IntegerVectorList strict;
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
if(!f.contains(*i))
strict.push_back(*i);
IntegerVectorList linealitySpace2=f.linealitySpace().dualCone().getEquations();
IntegerVectorList rays2=f.extremeRays();
for(IntegerVectorList::const_iterator i=rays2.begin();i!=rays2.end();i++)
{
linealitySpace2.push_back(*i);
}
IntegerVectorList empty;
HalfOpenCone C(n,linealitySpace2, empty, strict);
return !C.isEmpty();
}
PolyhedralCone PolyhedralCone::faceContaining(IntegerVector const &v)const
{
assert(n==v.size());
assert(contains(v));
IntegerVectorList newEquations=equations;
IntegerVectorList newInequalities;
for(IntegerVectorList::const_iterator i=inequalities.begin();i!=inequalities.end();i++)
if(dotLong(*i,v))
newInequalities.push_back(*i);
else
newEquations.push_back(*i);
PolyhedralCone ret(newInequalities,newEquations,n,(state>=1)?PCP_impliedEquationsKnown:0);
ret.ensureStateAsMinimum(state);
return ret;
}
PolyhedralCone PolyhedralCone::projection(int newn)const
{
assert(newn<=n);
assert(newn>=0);
IntegerVectorList rays=extremeRays();
IntegerVectorList lines=linealitySpace().generatorsOfSpan();
rays=rowsToIntegerMatrix(rays,n).submatrix(0,0,rays.size(),newn).getRows();
lines=rowsToIntegerMatrix(lines,n).submatrix(0,0,lines.size(),newn).getRows();
return givenByRays(rays,lines,newn);
}
|