1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#include "traverser_tropical.h"
#include <iostream>
#include "bergman.h"
#include "tropical.h"
#include "division.h"
#include "wallideal.h"
#include "groebnerengine.h"
#include "tropical2.h"
#include "multiplicity.h"
#include "buchberger.h"//in time use groebnerengine.h instead
#include "log.h"
static void checkSameLeadingTerms(PolynomialSet const &a, PolynomialSet const &b)
{
assert(a.size()==b.size());
PolynomialSet::const_iterator A=a.begin();
for(PolynomialSet::const_iterator B=b.begin();B!=b.end();B++,A++)
assert(A->getMarked().m.exponent==B->getMarked().m.exponent);
}
TropicalTraverser::TropicalTraverser(PolynomialSet const &coneGroebnerBasis_, PolynomialSet const &idealGroebnerBasis_):
coneGroebnerBasis(coneGroebnerBasis_),
idealGroebnerBasis(idealGroebnerBasis_),
theCone(coneGroebnerBasis_.getRing().getNumberOfVariables())
{
n=coneGroebnerBasis_.getRing().getNumberOfVariables();
updatePolyhedralCone();
PolyhedralCone homogeneitySpac=homogeneitySpace(coneGroebnerBasis);
d=homogeneitySpac.dimensionOfLinealitySpace();
}
void TropicalTraverser::updatePolyhedralCone()
{
//AsciiPrinter(Stderr)<<coneGroebnerBasis;
//fprintf(Stderr,"%i",n);
theCone=PolyhedralCone(fastNormals(wallInequalities(idealGroebnerBasis)),wallInequalities(coneGroebnerBasis),n);
theCone.canonicalize();
theCone.setMultiplicity(multiplicity(coneGroebnerBasis));
}
void TropicalTraverser::changeCone(IntegerVector const &ridgeVector, IntegerVector const &rayVector)
{
log2 {
debug << "Interior point:"<<theCone.getUniquePoint()<<"\n";
debug << "Ridge:"<<ridgeVector<<"Ray:"<<rayVector<<"\n";
}
assert(idealGroebnerBasis.containsInClosedGroebnerCone(ridgeVector));
log2 cerr<<endl<<"Changing cone"<<endl;
// assert(!containsMonomial(coneGroebnerBasis));
AsciiPrinter P(Stderr);
//P<<idealGroebnerBasis;
//P<<ridgeVector<<rayVector;
PolynomialSet ridgeIdeal=initialFormsAssumeMarked(idealGroebnerBasis,ridgeVector);
PolynomialSet ridgeIdealOld=ridgeIdeal;
WeightReverseLexicographicTermOrder T(rayVector);
// P<<ridgeIdeal;
log2 cerr<<"Computing initial Groebner basis"<<endl;
// buchberger(&ridgeIdeal,T);
ridgeIdeal=GE_groebnerBasis(ridgeIdeal,T,true);
//printMarkedTermIdeal(ridgeIdeal,"ridgeIdeal");
coneGroebnerBasis=initialFormsAssumeMarked(ridgeIdeal,rayVector);
PolynomialSet g2(coneGroebnerBasis.getRing());
// WeightTermOrder termOrder(termorderWeight(ridgeIdeal));
WeightTermOrder termOrder(termorderWeight(ridgeIdealOld));
log2 cerr<<"Lifting"<<endl;
PolynomialSet temp=ridgeIdealOld;
temp.markAndScale(T);
temp=temp.markedTermIdeal();
// P<<temp;
checkSameLeadingTerms(ridgeIdealOld,idealGroebnerBasis);
for(PolynomialSet::const_iterator j=ridgeIdeal.begin();j!=ridgeIdeal.end();j++)
{
/* {
Term m=j->getMarked();
P.printPolynomial(m);
if(division(m,temp,T).isZero()){cerr<<"YES";}
cerr<<endl;
}*/
g2.push_back(divisionLift(*j, ridgeIdealOld, idealGroebnerBasis, termOrder));
// cerr<<"*";
}
assert(g2.isMarked());
//printMarkedTermIdeal(g2,"g2");
log2 cerr<<"Autoreducing"<<endl;
// autoReduce(&g2,LexicographicTermOrder());
//PolynomialSet g2Old=g2;
int oldSize=g2.size();
// SINGULAR DOES NOT AUTO REDUCE AT THE MOMENT!
//idealGroebnerBasis=GE_autoReduce(g2);
{
idealGroebnerBasis=g2;
IntegerVectorList M;
M.push_back(ridgeVector);
M.push_back(rayVector);
MatrixTermOrder T(M);
assert(idealGroebnerBasis.checkMarkings(T));
autoReduce(&idealGroebnerBasis,T);
}
//printMarkedTermIdeal(g2,"g2");
/* if(g2.size()!=oldSize)
{
P<<g2Old;
P<<g2;
}*/
assert(idealGroebnerBasis.size()==oldSize);
// idealGroebnerBasis=g2;
// assert(!containsMonomial(coneGroebnerBasis));
log2 cerr<<"Done changing cone"<<endl<<endl;
// P<<coneGroebnerBasis;
// P<<idealGroebnerBasis;
/* log0{
WeightReverseLexicographicTermOrder T(ridgeVector);// WeightTermOrder
PolynomialSet A=idealGroebnerBasis;
buchberger(&A,T);
//cerr<<A;
PolynomialSet B=initialFormsAssumeMarked(A,ridgeVector);
WeightReverseLexicographicTermOrder T2(rayVector);
buchberger(&B,T2);
cerr<<"RIGHT";
P<<initialFormsAssumeMarked(B,rayVector);
cerr<<"RIGHT?";
P<<coneGroebnerBasis;
}*/
log2 cerr << "Number of terms in new basis: "<< g2.totalNumberOfTerms()<<endl;
updatePolyhedralCone();
}
IntegerVectorList TropicalTraverser::link(IntegerVector const &ridgeVector)
{
assert(idealGroebnerBasis.containsInClosedGroebnerCone(ridgeVector));
PolynomialSet tempIdeal=initialFormsAssumeMarked(idealGroebnerBasis,ridgeVector);
//P<<tempIdeal;
tempIdeal=saturatedIdeal(tempIdeal);//TODO: figure out if it is an advantage to saturate the ideal
IntegerVectorList rays;
PolyhedralCone saturatedHomogeneitySpace=homogeneitySpace(tempIdeal);
if(saturatedHomogeneitySpace.dimensionOfLinealitySpace()==d)//if saturation of the initial ideal changed the homogeneity space things are easy
{
IntegerVector v=theCone.link(ridgeVector).getUniquePoint();
rays.push_back(v);
rays.push_back(-v);
// rays.push_back(top.parentRay);
// rays.push_back(-top.parentRay);
}
else
{
//P<<tempIdeal;
BergmanFan b=bergmanRayIntersection(tempIdeal);
// BergmanFan b=bergmanRayIntersection(initialIdeal(idealGroebnerBasis,facetStack.front().ridges.front()));
bool trouble=false;
for(BergmanFan::MaximalConeList::const_iterator i=b.cones.begin();i!=b.cones.end();i++)
{
PolyhedralCone rayCone=i->theCone;
rayCone.canonicalize();
{
if(rayCone.getUniquePoint().isZero())trouble=true;
}
rays.push_back(rayCone.getUniquePoint());
}
if(trouble)
{
// b.print(P);
// P<<tempIdeal;
assert(!trouble);
}
}
return rays;
}
PolyhedralCone & TropicalTraverser::refToPolyhedralCone()
{
return theCone;
}
|