1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
#include "tropical2.h"
#include <stdlib.h>
#include <iostream>
#include "buchberger.h"
#include "division.h"
#include "tropical.h"
#include "wallideal.h"
#include "dimension.h"
#include "halfopencone.h"
#include "breadthfirstsearch.h"
#include "timer.h"
#include "log.h"
static Timer tropicalPrincipalIntersectionTimer("Tropical principal intersection",1);
static void startingConeError()
{
fprintf(Stderr,"UNABLE TO COMPUTE STARTING CONE.\n");
fprintf(Stderr,"THE STARTING CONE ALGORITHM IN GFAN IS BASED ON HEURISTICS WHICH HAVE FAILED ON THIS EXAMPLE.\n");
assert(0);
}
PolynomialSet initialIdeal(PolynomialSet const &g, IntegerVector const &weight)
//Assume homogeneous
{
PolynomialSet ret=g;
WeightReverseLexicographicTermOrder T(weight);
buchberger(&ret,T);
return initialForms(ret,weight);
}
Polynomial initialFormAssumeMarked(Polynomial const &p, IntegerVector const &weight)
{
Polynomial r(p.getRing());
IntegerVector markedExponent=p.getMarked().m.exponent;
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
{
IntegerVector dif=markedExponent-i->first.exponent;
if(dot(dif,weight)==0)
r+=Polynomial(Term(i->second,i->first));
}
r.mark(Monomial(p.getRing(),markedExponent));
return r;
}
PolynomialSet initialFormsAssumeMarked(PolynomialSet const &groebnerBasis, IntegerVector const &weight)
{
PolynomialRing theRing=groebnerBasis.getRing();
PolynomialSet r(theRing);
for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
{
r.push_back(initialFormAssumeMarked(*i,weight));
}
return r;
}
Polynomial initialForm(Polynomial const &p, IntegerVector const &weight)
{
if(p.isZero())return p;
int64 a=dotLong(p.terms.begin()->first.exponent,weight);
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
{
int64 b=dotLong(i->first.exponent,weight);
if(b>a)a=b;
}
Polynomial r(p.getRing());
bool ismarked=p.isMarked();
IntegerVector markedExponent;
if(ismarked)markedExponent=p.getMarked().m.exponent;
bool markedFound=false;
for(TermMap::const_iterator i=p.terms.begin();i!=p.terms.end();i++)
{
if(dotLong(i->first.exponent,weight)==a)
{
r+=Polynomial(Term(i->second,i->first));
if(ismarked)if((markedExponent-(i->first.exponent)).isZero())markedFound=true;
}
}
if(markedFound)
r.mark(Monomial(p.getRing(),markedExponent));
return r;
}
PolynomialSet initialForms(PolynomialSet const &groebnerBasis, IntegerVector const &weight)
{
PolynomialRing theRing=groebnerBasis.getRing();
PolynomialSet r(theRing);
if(theRing.getNumberOfVariables()!=weight.size())
{
cerr << "Error: Number of varaibles in polynomial ring "<<theRing.getNumberOfVariables()<< " length of weight vector " << weight.size() <<endl;
assert(0);
}
for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
{
r.push_back(initialForm(*i,weight));
}
return r;
}
PolyhedralFan tropicalPrincipalIntersection(int n, PolynomialSet const &g, int linealitySpaceDimension)
{
//return tropicalHyperSurfaceIntersection(n, g);////////////////////////////////////////
log2 fprintf(Stderr,"Intersecting\n");
log3 AsciiPrinter(Stderr).printPolynomialSet(g);
TimerScope ts(&tropicalPrincipalIntersectionTimer);
PolyhedralFan ret=PolyhedralFan::fullSpace(n);
for(PolynomialSet::const_iterator i=g.begin();i!=g.end();i++)
{
ret=refinement(ret,PolyhedralFan::bergmanOfPrincipalIdeal(*i),linealitySpaceDimension,true);
}
log2 fprintf(Stderr,"Done intersecting\n");
return ret;
}
static PolynomialSet checkList(IntegerVectorList const &l, PolynomialSet const &groebnerBasis, PolynomialSet *fullNeighbourBasis, int h, bool &result, bool onlyCheckRays)
{
for(IntegerVectorList::const_iterator i=l.begin();i!=l.end();i++)
{
WeightReverseLexicographicTermOrder t(*i);
log2 fprintf(Stderr,"Computing Gr\"obner basis with respect to:");
log2 AsciiPrinter(Stderr).printVector(*i);
log2 fprintf(Stderr,"\n");
PolynomialSet h2=groebnerBasis;
buchberger(&h2,t);
log2 fprintf(Stderr,"Done computing Gr\"obner basis.\n");
log3 AsciiPrinter(Stderr).printPolynomialSet(h2);
PolynomialSet wall=initialFormsAssumeMarked(h2,*i);
log3 AsciiPrinter(Stderr).printString("Initial ideal:\n");
log3 AsciiPrinter(Stderr).printPolynomialSet(wall);
int hdim2=dimensionOfHomogeneitySpace(wall);
if(hdim2>h)
{
if(!containsMonomial(wall))
{
log1 fprintf(Stderr,"Iterating recursively.\n");
//PolynomialSet initialIdeal=guessInitialIdealWithoutMonomial(wall,0);
PolynomialSet initialIdeal=guessInitialIdealWithoutMonomial(wall,fullNeighbourBasis,onlyCheckRays);
if(fullNeighbourBasis)
{
//*fullNeighbourBasis=liftBasis(initialIdeal,h2);
*fullNeighbourBasis=liftBasis(*fullNeighbourBasis,h2);
}
result=true;
return initialIdeal;
}
}
}
result=false;
return groebnerBasis;
}
PolynomialSet guessInitialIdealWithoutMonomial(PolynomialSet const &groebnerBasis, PolynomialSet *fullNeighbourBasis, bool onlyCheckRays) //ideal must be homogeneous
// fullNeighbourBasis is set to a Groebner basis of the full ideal. The returned basis and fullNeighbourBasis have at least one termorder in common
{
// log0 fprintf(Stderr,"A\n");
assert(groebnerBasis.isValid());
// log0 fprintf(Stderr,"B\n");
if(fullNeighbourBasis)
{
assert(fullNeighbourBasis->isValid());
}
// log0 fprintf(Stderr,"C\n");
int n=groebnerBasis.numberOfVariablesInRing();
// log0 fprintf(Stderr,"D\n");
int h=dimensionOfHomogeneitySpace(groebnerBasis);
// log0 fprintf(Stderr,"E\n");
int d=krullDimension(groebnerBasis);
// log0 fprintf(Stderr,"F\n");
if(d==h)
{
if(fullNeighbourBasis)*fullNeighbourBasis=groebnerBasis;
return groebnerBasis;
}
{
log2 fprintf(Stderr,"Computing extreme rays.\n");
//IntegerVectorList a;
PolyhedralCone p=coneFromMarkedBasis(groebnerBasis);
//PolyhedralCone p=PolyhedralCone(wallInequalities(groebnerBasis),a);
IntegerVectorList extreme=p.extremeRays();
log2 fprintf(Stderr,"Extreme rays of Groebner cone:\n");
log2 AsciiPrinter(Stderr).printVectorList(extreme);
bool result;
PolynomialSet r=checkList(extreme,groebnerBasis,fullNeighbourBasis,h,result, onlyCheckRays);
if(result)return r;
}
if(onlyCheckRays)startingConeError();
PolyhedralFan f=PolyhedralFan::fullSpace(n);
/* for(int i=0;i<d-1;i++)
{
IntegerVector v(n);
for(int j=0;j<n;j++)v[j]=rand()&1;
IntegerVectorList a,b;
b.push_back(v);
PolyhedralFan F(n);
F.insert(PolyhedralCone(a,b));
f=refinement(f,F);
}
AsciiPrinter P(Stderr);
f.print(&P);
*/
int hypersurfacesToGo=groebnerBasis.size();
for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
{
fprintf(Stderr,"Hypersurfaces to go:%i\n",hypersurfacesToGo--);
fprintf(Stderr,"Max dimension: %i\n",f.getMaxDimension());
f=refinement(f,PolyhedralFan::bergmanOfPrincipalIdeal(*i));
f.removeAllExcept(3);
IntegerVectorList l=f.getRelativeInteriorPoints();
bool result;
PolynomialSet r=checkList(l,groebnerBasis,fullNeighbourBasis,h,result, onlyCheckRays);
if(result)return r;
}
startingConeError();
return groebnerBasis;
}
static PolynomialSet checkListStably(IntegerVectorList const &l, PolynomialSet const &groebnerBasis, PolynomialSet *fullNeighbourBasis, int h, bool &result, bool onlyCheckRays)
{
debug<< "Checklist called on"<<groebnerBasis;
for(IntegerVectorList::const_iterator i=l.begin();i!=l.end();i++)
{
WeightReverseLexicographicTermOrder t(*i);
log2 fprintf(Stderr,"Taking initial forms with respect to:");
log2 AsciiPrinter(Stderr).printVector(*i);
log2 fprintf(Stderr,"\n");
PolynomialSet h2=groebnerBasis;
log2 fprintf(Stderr,"Done computing Gr\"obner basis.\n");
log3 AsciiPrinter(Stderr).printPolynomialSet(h2);
PolynomialSet wall=initialForms(h2,*i);
log3 AsciiPrinter(Stderr).printString("Initial ideal:\n");
log3 AsciiPrinter(Stderr).printPolynomialSet(wall);
int hdim2=dimensionOfHomogeneitySpace(wall);
if(hdim2>h)
{
if(nonEmptyStableIntersection(wall))
{
log1 fprintf(Stderr,"Iterating recursively.\n");
//PolynomialSet initialIdeal=guessInitialIdealWithoutMonomial(wall,0);
PolynomialSet initialIdeal=guessInitialIdealWithoutMonomialStably(wall,fullNeighbourBasis,onlyCheckRays);
if(fullNeighbourBasis)
{
//*fullNeighbourBasis=liftBasis(initialIdeal,h2);
// *fullNeighbourBasis=liftBasis(*fullNeighbourBasis,h2);
*fullNeighbourBasis=groebnerBasis;
fullNeighbourBasis->copyMarkings(initialIdeal);
}
result=true;
return initialIdeal;
}
}
}
result=false;
return groebnerBasis;
}
PolynomialSet guessInitialIdealWithoutMonomialStably(PolynomialSet const &groebnerBasis, PolynomialSet *fullNeighbourBasis, bool onlyCheckRays) //ideal must be homogeneous
// fullNeighbourBasis is set to a Groebner basis of the full ideal. The returned basis and fullNeighbourBasis have at least one termorder in common
{
int n=groebnerBasis.numberOfVariablesInRing();
int h=dimensionOfHomogeneitySpace(groebnerBasis);
int d=n-groebnerBasis.size();//krullDimension(groebnerBasis);
debug<</*"d"<<d<<*/"h"<<h<<"n"<<n<<"\n";
if(d==h)
{
if(fullNeighbourBasis)*fullNeighbourBasis=groebnerBasis;
return groebnerBasis;
}
{
log2 fprintf(Stderr,"Computing extreme rays.\n");
//IntegerVectorList a;
PolyhedralCone p=coneFromMarkedBasis(groebnerBasis);
//PolyhedralCone p=PolyhedralCone(wallInequalities(groebnerBasis),a);
IntegerVectorList extreme=p.extremeRays();
log2 fprintf(Stderr,"Extreme rays of Groebner cone:\n");
log2 AsciiPrinter(Stderr).printVectorList(extreme);
bool result;
PolynomialSet r=checkListStably(extreme,groebnerBasis,fullNeighbourBasis,h,result, onlyCheckRays);
if(result)return r;
}
if(onlyCheckRays)startingConeError();
PolyhedralFan f=PolyhedralFan::fullSpace(n);
int hypersurfacesToGo=groebnerBasis.size();
for(PolynomialSet::const_iterator i=groebnerBasis.begin();i!=groebnerBasis.end();i++)
{
fprintf(Stderr,"Hypersurfaces to go:%i\n",hypersurfacesToGo--);
fprintf(Stderr,"Max dimension: %i\n",f.getMaxDimension());
f=refinement(f,PolyhedralFan::bergmanOfPrincipalIdeal(*i));
f.removeAllExcept(3);
IntegerVectorList l=f.getRelativeInteriorPoints();
bool result;
PolynomialSet r=checkListStably(l,groebnerBasis,fullNeighbourBasis,h,result, onlyCheckRays);
if(result)return r;
}
startingConeError();
return groebnerBasis;
}
|