1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
#include "tropicalbasis.h"
#include <iostream>
#include "buchberger.h"
#include "groebnerengine.h"
#include "tropical.h"
#include "tropical2.h"
#include "division.h"
#include "wallideal.h"
#include "halfopencone.h"
#include "log.h"
#include "timer.h"
static Timer iterativeTropicalBasisTimer("Iterative tropical basis",1);
typedef set<IntegerVector> IntegerVectorSet;
static Polynomial cleverSaturation(Polynomial const &p, IntegerVector const &w)
{
PolynomialRing theRing=p.getRing();
if(p.isZero())return p;
if(w.size()==0)return p;
Polynomial f=initialForm(p,w);
debug<<"P:"<<p<<" w: "<<w<<" f: "<<f<<"\n";
IntegerVector gcd=f.greatestCommonMonomialDivisor();
if(!gcd.isZero())
{
debug<<"OLD"<<p<<"\n";
debug<<"initialForm"<<initialForm(p,w)<<"\n";
PolynomialSet reducer(p.getRing());
reducer.push_back(theRing.monomialFromExponentVector(IntegerVector::allOnes(theRing.getNumberOfVariables()))-theRing.one());
reducer.markAndScale(LexicographicTermOrder());
debug<<gcd;
int s=gcd.max();
Polynomial all=theRing.monomialFromExponentVector(s*IntegerVector::allOnes(theRing.getNumberOfVariables())-gcd);
Polynomial g= division(all*p,reducer,LexicographicTermOrder());
g.saturate();
debug<<"NEW"<<g<<"\n";
return g;
}
return p;
}
static void initialSaturatingBuchberger(PolynomialSet *g, TermOrder const &termOrder_, IntegerVector const &w_)
{
int n=w_.size();
IntegerVectorList temp;
temp.push_back(IntegerVector::standardVector(n+1,n));
IntegerVector w=concatenation(w_,IntegerVector(1));w[w.size()-1]=-w_.sum();
temp.push_back(w);
MatrixTermOrder termOrder(temp);
PolynomialRing theRing=g->getRing().withVariablesAppended("Z");
PolynomialSet sPolynomials(theRing);
for(PolynomialSet::const_iterator i=g->begin();i!=g->end();i++)
if(!i->isZero())sPolynomials.push_back(cleverSaturation(i->embeddedInto(theRing),w)); // It is safe and useful to ignore the 0 polynomial
sPolynomials.push_back(theRing.monomialFromExponentVector(IntegerVector::allOnes(theRing.getNumberOfVariables()))-theRing.one());
sPolynomials.saturate();
sPolynomials.markAndScale(termOrder);
*g=PolynomialSet(theRing);
while(!sPolynomials.empty())
{
Polynomial p=*sPolynomials.begin();
sPolynomials.pop_front();
p=division(p,*g,termOrder);
if(!p.isZero())
{
p=cleverSaturation(p,w);
p.mark(termOrder);
p.scaleMarkedCoefficientToOne();
bool isMonomial=p.isMonomial();
for(PolynomialSet::const_iterator i=g->begin();i!=g->end();i++)
if((!isMonomial) || (!i->isMonomial())) // 2 % speed up!
{
if(!relativelyPrime(i->getMarked().m.exponent,p.getMarked().m.exponent))
{
Polynomial s=sPolynomial(*i,p);
s.mark(termOrder); // with respect to some termorder
s.scaleMarkedCoefficientToOne();
sPolynomials.push_back(s);
}
}
g->push_back(p);
{
static int t;
t++;
// if((t&31)==0)fprintf(Stderr," gsize %i spolys:%i\n",g->size(),sPolynomials.size());
}
}
}
minimize(g);
autoReduce(g,termOrder);
}
PolynomialSet tropicalBasisOfCurve(int n, PolynomialSet g, PolyhedralFan *intersectionFan, int linealitySpaceDimension) //Assuming g is homogeneous
{
/*
* TODO: Introduce the notion of a tropical prebasis:
*
* Definition. A set of polynomials f_1,...,f_m is called a tropical prebasis for the ideal they
* generate if for every w not in the tropical variety of that ideal there exists a monomial in
* the ideal generated by the initial forms of f_1,...,f_m w.r.t. w.
*
* Computing a tropical prebasis could be faster than computing a tropical basis since fewer
* groebner bases for the originial ideal might be needed. Still, however, it is relatively easy
* to determine the tropical variety given a tropical prebasis.
*/
// bool prebasis=true;
// debug<<"PREBASIS="<<prebasis<<"\n";
log2 debug<<"TropicalBasis begin\n";
log2 debug<<g;
int homog=linealitySpaceDimension;
assert(homog>0 || n==0);
TimerScope ts(&iterativeTropicalBasisTimer);
PolyhedralFan f(n);
if(!intersectionFan)intersectionFan=&f;
// *intersectionFan=tropicalPrincipalIntersection(n,g,linealitySpaceDimension);
// log1 fprintf(Stderr,"WARINING USING EXPERIMENTAL TROPICAL HYPERSURFACE INTERSECTION ROUTINE!!\n");
*intersectionFan=tropicalHyperSurfaceIntersectionClosed(n, g);
IntegerVectorSet containsNoMonomialCache;
while(1)
{
PolyhedralFan::coneIterator i;
// {AsciiPrinter P(Stderr);intersectionFan->printWithIndices(&P);}
restart:
// {AsciiPrinter P(Stderr);intersectionFan->printWithIndices(&P);}
for(i=intersectionFan->conesBegin();i!=intersectionFan->conesEnd();i++)
{
// log1 cerr<<"!@#$";
IntegerVector relativeInteriorPoint=i->getRelativeInteriorPoint();
// log1 cerr<<"1234/n";
if(containsNoMonomialCache.count(relativeInteriorPoint)>0)
{
log2 fprintf(Stderr,"Weight vector found in cache.... contains no monomial.\n");
}
else
{
/* if(prebasis)
{
if(containsMonomial(initialForms(g,relativeInteriorPoint)))
{
intersectionFan->insertFacetsOfCone(*i);
intersectionFan->remove(*i);
debug<<"LOWERING DIMENSION OF CONE\n";//TODO: checking cones in order of dimension could avoid this.
goto restart;
}
}*/
WeightReverseLexicographicTermOrder t(relativeInteriorPoint);
log2 fprintf(Stderr,"Computing Gr\"obner basis with respect to:");
log2 AsciiPrinter(Stderr).printVector(relativeInteriorPoint);
log2 fprintf(Stderr,"\n");
PolynomialSet h2=g;
// debug<<"g"<<g;
/* {Adjust these lines somehow to enable the saturating buchberger.
debug<<h2;
initialSaturatingBuchberger(&h2, t, relativeInteriorPoint);
//buchberger(&h2,t,true);
debug<<"SATURATING BUCHBERGER DONE\n";
}*/
// buchberger(&h2,t);
h2=GE_groebnerBasis(h2,t,true);
// debug<<"h2"<<h2;
log2 fprintf(Stderr,"Done computing Gr\"obner basis.\n");
// debug<<h2;
// log3 AsciiPrinter(Stderr).printPolynomialSet(h2);
PolynomialSet wall=initialFormsAssumeMarked(h2,relativeInteriorPoint);
if(containsMonomial(wall))
{
log2 fprintf(Stderr,"Initial ideal contains a monomial.\n");
Polynomial m(computeTermInIdeal(wall));
log2 fprintf(Stderr,"Done computing term in ideal\n");
Polynomial temp=m-division(m,h2,LexicographicTermOrder());
g.push_back(temp);
log2 fprintf(Stderr,"Adding element to basis:\n");
log2 AsciiPrinter(Stderr).printPolynomial(temp);
log2 fprintf(Stderr,"\n");
*intersectionFan=refinement(*intersectionFan,PolyhedralFan::bergmanOfPrincipalIdeal(temp),linealitySpaceDimension,true);
break;
}
else
{
if(i->dimension()<=1+homog)
//if(!containsMonomial(wall) && i->dimension()<=1+homog)//line for testing perturbation code
{
log2 fprintf(Stderr,"Initial ideal contains no monomial... caching weight vector.\n");
containsNoMonomialCache.insert(relativeInteriorPoint);
}
else
{
/* We need to compute the initial ideal with
respect to "relativeInteriorPoint" perturbed
with a basis of the span of the cone. Instead
of perturbing we may as well compute initial
ideal successively. We have already computed
the initial ideal with respect to
"relativeInteriorPoint". To get the perturbed
initial ideal we take initial ideal with
respect to each vector in the basis of the
span.*/
IntegerVectorList empty;
PolyhedralCone dual=PolyhedralCone(empty,i->getEquations(),i->ambientDimension()).dualCone();
dual.canonicalize();
IntegerVectorList basis=dual.getEquations();
PolynomialSet witnessLiftBasis=h2;//basis with respect to relativeInteriorPoint
log2 debug<<"basis"<<basis<<"\n";
for(IntegerVectorList::const_iterator j=basis.begin();j!=basis.end();j++)
{
log2 debug<<"wall"<<wall<<"\n";
WeightReverseLexicographicTermOrder t(*j);
PolynomialSet h3=wall;
buchberger(&h3,t);
wall=initialFormsAssumeMarked(h3,*j);
witnessLiftBasis=liftBasis(h3,witnessLiftBasis);
}
log2 debug<<"wall"<<wall<<"\n";
if(containsMonomial(wall))
{
Polynomial m(computeTermInIdeal(wall));
Polynomial temp=m-division(m,witnessLiftBasis,LexicographicTermOrder());
g.push_back(temp);
*intersectionFan=refinement(*intersectionFan,PolyhedralFan::bergmanOfPrincipalIdeal(temp),linealitySpaceDimension,true);
break;
}
else
{
assert(0);
}
}
}
}
}
if(i==intersectionFan->conesEnd())break;
}
log2 debug<<"TropicalBasis end\n";
log2 cerr <<"RETURNING";
return g;
}
/*
PolynomialSet iterativeTropicalBasisNoPerturbation(int n, PolynomialSet g, PolyhedralFan *intersectionFan, int linealitySpaceDimension, bool doPrint) //Assuming g is homogeneous
{
TimerScope ts(&iterativeTropicalBasisTimer);
PolyhedralFan f(n);
if(!intersectionFan)intersectionFan=&f;
*intersectionFan=tropicalPrincipalIntersection(n,g,linealitySpaceDimension);
IntegerVectorSet containsNoMonomialCache;
while(1)
{
// AsciiPrinter(Stderr).printPolyhedralFan(*intersectionFan);
// assert(f.getMaxDimension()==1);
IntegerVectorList l=intersectionFan->getRelativeInteriorPoints();
IntegerVectorList::const_iterator i;
for(i=l.begin();i!=l.end();i++)
{
if(containsNoMonomialCache.count(*i)>0)
{
if(doPrint)fprintf(Stderr,"Weight vector found in cache.... contains no monomial.\n");
}
else
{
WeightReverseLexicographicTermOrder t(*i);
if(doPrint)fprintf(Stderr,"Computing Gr\"obner basis with respect to:");
if(doPrint)AsciiPrinter(Stderr).printVector(*i);
if(doPrint)fprintf(Stderr,"\n");
PolynomialSet h2=g;
buchberger(&h2,t);
if(doPrint)fprintf(Stderr,"Done computing Gr\"obner basis.\n");
// AsciiPrinter(Stderr).printPolynomialSet(h2);
PolynomialSet wall=initialFormsAssumeMarked(h2,*i);
//fprintf(Stderr,"Wall ideal:\n");
//AsciiPrinter(Stderr).printPolynomialSet(wall);
if(containsMonomial(wall))
{
if(doPrint)fprintf(Stderr,"Initial ideal contains a monomial.\n");
Polynomial m(computeTermInIdeal(wall));
if(doPrint)fprintf(Stderr,"Done computing term in ideal\n");
Polynomial temp=m-division(m,h2,LexicographicTermOrder());
g.push_back(temp);
if(doPrint)fprintf(Stderr,"Adding element to basis:\n");
if(doPrint)AsciiPrinter(Stderr).printPolynomial(temp);
if(doPrint)fprintf(Stderr,"\n");
*intersectionFan=refinement(*intersectionFan,PolyhedralFan::bergmanOfPrincipalIdeal(temp),linealitySpaceDimension,true);
break;
}
else
{
if(doPrint)fprintf(Stderr,"Initial ideal contains no monomial... caching weight vector.\n");
containsNoMonomialCache.insert(*i);
}
}
}
if(i==l.end())break;
}
return g;
}
*/
|