1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
#include "tropicaltraverse.h"
#include "bergman.h"
#include "enumeration.h"
#include "reversesearch.h"
#include "tropical.h"
#include "buchberger.h"
#include "division.h"
#include "dimension.h"
#include "wallideal.h"
#include "lp.h"
#include "subspace.h"
#include "symmetry.h"
#include "tropical2.h"
#include "tropicalbasis.h"
#include "polyhedralcone.h"
#include "polyhedralfan.h"
#include "multiplicity.h"
#include "log.h"
#include "restrictedautoreduction.h"
#include "groebnerengine.h"
#include <iostream>
/* Faster version of the code in bergman.cpp. */
/** The hypergraph of ridges and facets can be considered as a usual
bipartite graph where the right nodes are the ridges and the left
nodes are the facets. We wish to make a traversal of this
bipartite graph keeping track of the boundary edges of the
traversed set. The ConeOrbit object represents the orbit of a
ridge. The edges of the ridge are listed but only those which
belong to the boundary of the set of ridges seen so far. When a
ridge is discovered the ConeOrbit object will be created with all
its edges present (except the one it was reached by). As progress
in the computation is made these edges will be deleted.
*/
class Boundary2
{
typedef pair<IntegerVector,IntegerVector> EFirst;
typedef pair<IntegerVectorList*,IntegerVectorList::iterator> ESecond;
SymmetryGroup const &sym;
map<EFirst,ESecond > theSet;
int theSetSize;
public:
Boundary2(SymmetryGroup const &sym_):
sym(sym_),
theSetSize(0)
{
}
int size()const
{
return theSetSize;
}
pair<IntegerVector,IntegerVector> normalForm(IntegerVector const &ridge, IntegerVector const &ray)const
{
pair<IntegerVector,IntegerVector> ret;
IntegerVector perm;
ret.first=sym.orbitRepresentative(ridge,&perm);
ret.second=sym.orbitRepresentativeFixing(SymmetryGroup::compose(perm,ray),ret.first);
return ret;
}
bool containsFlip(IntegerVector const &ridge, IntegerVector const &ray, IntegerVectorList *storedInList_, IntegerVectorList::iterator listIterator_)
{
assert(ridge.size()==ray.size());
EFirst p=normalForm(ridge,ray);
if(theSet.count(p)==1)
{
theSet[p].first->erase(theSet[p].second);
theSet.erase(p);
theSetSize--;
return true;
}
theSet[p]=ESecond(storedInList_,listIterator_);
theSetSize++;
return false;
}
void removeDuplicates(IntegerVector const &ridge, IntegerVectorList &rays)const
{
IntegerVectorList ret;
set<IntegerVector> representatives;
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
{
IntegerVector rep=sym.orbitRepresentativeFixing(*i,ridge);
if(representatives.count(rep)==0)
{
representatives.insert(rep);
ret.push_back(*i);
}
}
rays=ret;
}
void print()const
{
cerr<< "Boundary" <<endl;
for(map<EFirst,ESecond>::const_iterator i=theSet.begin();i!=theSet.end();i++)
{
AsciiPrinter P(Stderr);
P << i->first.first << i->first.second;
cerr << endl;
}
cerr<<endl<<endl;
}
};
/**
Rewrite these comments.
During traversal the path from the current facet to the starting
facet is stored on a stack. The elements of the stack are objects
of the class pathStep. The top element on the stack tells through
which ridge the current facet was reached. This is done by the
value parent ridge which is the unique ray of the ridge. In order
not to recompute the ridge the path facet contains rays of the link
of the ridge represented by their unique vector. - or rather only
the rays that are yet to be processed are stored in ridgeRays. In
order to trace the path back the unique point of the ray from which
the ridge was reached is stored in parentRay.
*/
struct pathStepRidge
{
IntegerVector parentRidge;
IntegerVectorList rays;
IntegerVector parentRay;
};
struct pathStepFacet
{
IntegerVectorList ridges;
};
/**
We need to simulate two mutually recursive functions. An actual
implementation of these two functions would propably not work since
the recursion depth could easily be 10000.
Here follows a sketch of the simulation
lav kegle
find ridges
skriv ned i objekt
put paa stakken
L1:
if ridges in top element
compute tropical curve
construct stak object with rays; set parrentRidge,ridgeRays
push ridge
else
pop facet
if empty break;
goto L2
L2:
if(ridgeRays not empty)
change CONE
<---entry point
push facet
else
pop ridge
change CONE
goto L1
The strategy for marking is as follows Before a vertex is pushed the
edges that needs to be taken are written in its data. A edge is only
written if its orbit has not been marked. Each time an edge is written
it is simultaneously marked.
*/
static void checkSameLeadingTerms(PolynomialSet const &a, PolynomialSet const &b)
{
assert(a.size()==b.size());
PolynomialSet::const_iterator A=a.begin();
for(PolynomialSet::const_iterator B=b.begin();B!=b.end();B++,A++)
assert(A->getMarked().m.exponent==B->getMarked().m.exponent);
}
static void printMarkedTermIdeal(PolynomialSet const &g, string const &s)
{
PolynomialSet a=g.markedTermIdeal();
PolynomialSet b=a;
minimize(&b);
cerr << "Printing marked termideal. "<<s<< "size:"<<g.size()<<","<<a.size()<<","<<b.size()<<endl;
AsciiPrinter P(Stderr);
cerr << "initial ideal:";
P<<a;
cerr << "minimized:";
P<<b;
assert(a.size()==b.size());
}
static void changeCone(PolynomialSet &coneGroebnerBasis, PolynomialSet &idealGroebnerBasis, IntegerVector const &ridgeVector, IntegerVector const &rayVector)
{
assert(idealGroebnerBasis.containsInClosedGroebnerCone(ridgeVector));
log2 cerr<<endl<<"Changing cone"<<endl;
assert(!containsMonomial(coneGroebnerBasis));
AsciiPrinter P(Stderr);
//P<<idealGroebnerBasis;
//P<<ridgeVector<<rayVector;
PolynomialSet ridgeIdeal=initialFormsAssumeMarked(idealGroebnerBasis,ridgeVector);
PolynomialSet ridgeIdealOld=ridgeIdeal;
WeightReverseLexicographicTermOrder T(rayVector);
// P<<ridgeIdeal;
log2 cerr<<"Computing initial Groebner basis"<<endl;
// buchberger(&ridgeIdeal,T);
ridgeIdeal=GE_groebnerBasis(ridgeIdeal,T,true);
//printMarkedTermIdeal(ridgeIdeal,"ridgeIdeal");
coneGroebnerBasis=initialFormsAssumeMarked(ridgeIdeal,rayVector);
PolynomialSet g2(coneGroebnerBasis.getRing());
// WeightTermOrder termOrder(termorderWeight(ridgeIdeal));
WeightTermOrder termOrder(termorderWeight(ridgeIdealOld));
log2 cerr<<"Lifting"<<endl;
PolynomialSet temp=ridgeIdealOld;
temp.markAndScale(T);
temp=temp.markedTermIdeal();
// P<<temp;
checkSameLeadingTerms(ridgeIdealOld,idealGroebnerBasis);
for(PolynomialSet::const_iterator j=ridgeIdeal.begin();j!=ridgeIdeal.end();j++)
{
/* {
Term m=j->getMarked();
P.printPolynomial(m);
if(division(m,temp,T).isZero()){cerr<<"YES";}
cerr<<endl;
}*/
g2.push_back(divisionLift(*j, ridgeIdealOld, idealGroebnerBasis, termOrder));
cerr<<"*";
}
assert(g2.isMarked());
//printMarkedTermIdeal(g2,"g2");
log2 cerr<<"Autoreducing"<<endl;
// autoReduce(&g2,LexicographicTermOrder());
//PolynomialSet g2Old=g2;
int oldSize=g2.size();
idealGroebnerBasis=GE_autoReduce(g2);
//printMarkedTermIdeal(g2,"g2");
/* if(g2.size()!=oldSize)
{
P<<g2Old;
P<<g2;
}*/
assert(idealGroebnerBasis.size()==oldSize);
// idealGroebnerBasis=g2;
assert(!containsMonomial(coneGroebnerBasis));
log2 cerr<<"Done changing cone"<<endl<<endl;
// P<<coneGroebnerBasis;
// P<<idealGroebnerBasis;
/* log0{
WeightReverseLexicographicTermOrder T(ridgeVector);// WeightTermOrder
PolynomialSet A=idealGroebnerBasis;
buchberger(&A,T);
//cerr<<A;
PolynomialSet B=initialFormsAssumeMarked(A,ridgeVector);
WeightReverseLexicographicTermOrder T2(rayVector);
buchberger(&B,T2);
cerr<<"RIGHT";
P<<initialFormsAssumeMarked(B,rayVector);
cerr<<"RIGHT?";
P<<coneGroebnerBasis;
}*/
log2 cerr << "Number of terms in new basis: "<< g2.totalNumberOfTerms()<<endl;
}
void printStack(list<pathStepFacet> const &facetStack, list<pathStepRidge> const &ridgeStack)
{
list<pathStepFacet>::const_iterator i=facetStack.begin();
list<pathStepRidge>::const_iterator j=ridgeStack.begin();
AsciiPrinter P(Stderr);
cerr<<"STACK:"<<endl;
if(facetStack.size()>ridgeStack.size())goto entry;
do
{
cerr<<"RIDGE:"<<endl;
P<<j->parentRidge<<j->rays<<j->parentRay;
cerr<<endl;
j++;
entry:
cerr<<"FACET:"<<endl;
P<<i->ridges;
cerr<<endl;
i++;
}
while(i!=facetStack.end());
int a;
//cin >> a;
}
PolyhedralFan tropicalTraverse(PolynomialSet coneGroebnerBasis, PolynomialSet idealGroebnerBasis, SymmetryGroup const *symmetryGroup)
{
PolynomialSet ideal=idealGroebnerBasis;
PolynomialRing theRing=coneGroebnerBasis.getRing();
assert(coneGroebnerBasis.numberOfVariablesInRing()==idealGroebnerBasis.numberOfVariablesInRing());
int n=coneGroebnerBasis.numberOfVariablesInRing();
PolyhedralFan ret(n);
PolyhedralCone homogeneitySpac=homogeneitySpace(coneGroebnerBasis);
int d=homogeneitySpac.dimensionOfLinealitySpace();
SymmetryGroup localSymmetryGroup(n);
if(!symmetryGroup)symmetryGroup=&localSymmetryGroup;
Boundary2 boundary(*symmetryGroup);
list<pathStepFacet> facetStack;
list<pathStepRidge> ridgeStack;
int numberOfCompletedFacets=0;
int numberOfCompletedRidges=0;
int stackSize=0;
PolyhedralCone currentFacet(n);
IntegerVector facetUniqueVector;
goto entry;
while(1)
{
L1:
// boundary.print();
//printStack(facetStack,ridgeStack);
if(!facetStack.front().ridges.empty())
{
cerr<<"1";
pathStepRidge top;
PolyhedralCone link=currentFacet.link(facetStack.front().ridges.front());
link.canonicalize();
cerr<<"2";
top.parentRidge=facetStack.front().ridges.front();
top.parentRay=link.getUniquePoint();
cerr<<"3";
AsciiPrinter P(Stderr);
// P<<"Cone groebner basis"<<coneGroebnerBasis;
// P<<"Ideal groebner basis";
//P<<idealGroebnerBasis;
assert(idealGroebnerBasis.containsInClosedGroebnerCone(facetStack.front().ridges.front()));
PolynomialSet tempIdeal=initialFormsAssumeMarked(idealGroebnerBasis,facetStack.front().ridges.front());
//P<<tempIdeal;
tempIdeal=saturatedIdeal(tempIdeal);
IntegerVectorList rays;
PolyhedralCone saturatedHomogeneitySpace=homogeneitySpace(tempIdeal);
if(saturatedHomogeneitySpace.dimensionOfLinealitySpace()==d)//if saturation of the initial ideal changed the homogeneity space things are easy
{
rays.push_back(top.parentRay);
rays.push_back(-top.parentRay);
}
else
{
//P<<tempIdeal;
BergmanFan b=bergmanRayIntersection(tempIdeal);
// BergmanFan b=bergmanRayIntersection(initialIdeal(idealGroebnerBasis,facetStack.front().ridges.front()));
cerr<<"4";
bool trouble=false;
for(BergmanFan::MaximalConeList::const_iterator i=b.cones.begin();i!=b.cones.end();i++)
{
PolyhedralCone rayCone=i->theCone;
rayCone.canonicalize();
{
if(rayCone.getUniquePoint().isZero())trouble=true;
}
rays.push_back(rayCone.getUniquePoint());
}
if(trouble)
{
b.print(P);
P<<tempIdeal;
assert(!trouble);
}
}
//P<<"RIDGE"<<facetStack.front().ridges.front()<<"\nRAYS"<<rays;
cerr<<"5";
boundary.removeDuplicates(top.parentRidge,rays);
cerr<<"6";
ridgeStack.push_front(top);stackSize++;
IntegerVector ridgeRidgeRidge=facetStack.front().ridges.front();
for(IntegerVectorList::const_iterator i=rays.begin();i!=rays.end();i++)
{
ridgeStack.front().rays.push_front(*i);
if(boundary.containsFlip(ridgeRidgeRidge,*i,&ridgeStack.front().rays,ridgeStack.front().rays.begin()))
ridgeStack.front().rays.pop_front();
}
cerr<<"7";
numberOfCompletedRidges++;
}
else
{
facetStack.pop_front();stackSize--;
if(facetStack.empty())break;
}
L2:
// boundary.print();
//printStack(facetStack,ridgeStack);
if(!ridgeStack.front().rays.empty())
{
changeCone(coneGroebnerBasis, idealGroebnerBasis, ridgeStack.front().parentRidge,ridgeStack.front().rays.front());
entry:
// ret.cones.push_back(BergmanFan::MaximalCone(coneGroebnerBasis,idealGroebnerBasis,false,0,0));
log1 fprintf(Stderr,"\n-------------------------------------\n");
log1 fprintf(Stderr,"Boundary edges in bipartite graph: %i, Completed ridges: %i, Completed facets: %i, Recursion depth:%i\n",boundary.size(),numberOfCompletedRidges,numberOfCompletedFacets,stackSize);
log1 fprintf(Stderr,"-------------------------------------\n");
currentFacet=PolyhedralCone(fastNormals(wallInequalities(idealGroebnerBasis)),wallInequalities(coneGroebnerBasis),n);
cerr<<"A";
currentFacet.canonicalize();
cerr<<"B";
ret.insert(currentFacet);
IntegerVectorList inequalities=currentFacet.getHalfSpaces();
IntegerVectorList equations=currentFacet.getEquations();
facetUniqueVector=currentFacet.getUniquePoint();
IntegerVectorList facetNormals=currentFacet.getHalfSpaces();
pathStepFacet stepFacet;
IntegerVectorList ridges;
cerr<<"C";
for(IntegerVectorList::const_iterator i=facetNormals.begin();i!=facetNormals.end();i++)
{
equations.push_back(*i);
PolyhedralCone ridgeCone(inequalities,equations,n);
equations.pop_back();
ridgeCone.canonicalize();
ridges.push_back(ridgeCone.getUniquePoint());
}
cerr<<"D";
IntegerVector temp(n);
boundary.removeDuplicates(temp,ridges);
cerr<<"E";
facetStack.push_front(stepFacet);stackSize++;
for(IntegerVectorList::const_iterator i=ridges.begin();i!=ridges.end();i++)
{
PolyhedralCone rayCone=currentFacet.link(*i);
rayCone.canonicalize();
IntegerVector rayUniqueVector=rayCone.getUniquePoint();
facetStack.front().ridges.push_front(*i);
if(boundary.containsFlip(*i,rayUniqueVector,&facetStack.front().ridges,facetStack.front().ridges.begin()))
facetStack.front().ridges.pop_front();
}
cerr<<"F";
numberOfCompletedFacets++;
}
else
{
changeCone(coneGroebnerBasis, idealGroebnerBasis, ridgeStack.front().parentRidge,ridgeStack.front().parentRay);
currentFacet=PolyhedralCone(fastNormals(wallInequalities(idealGroebnerBasis)),wallInequalities(coneGroebnerBasis),n);
currentFacet.canonicalize();
ridgeStack.pop_front();stackSize--;
cerr<<"BACK"<<endl;
for(IntegerVectorList::const_iterator i=facetStack.front().ridges.begin();i!=facetStack.front().ridges.end();i++)
{
assert(idealGroebnerBasis.containsInClosedGroebnerCone(*i));
assert(coneGroebnerBasis.isHomogeneous(*i));
}
}
}//goto L1
return ret;
}
void coneChangeDebugger(PolynomialSet coneGroebnerBasis, PolynomialSet idealGroebnerBasis, IntegerVectorList const &ridges, IntegerVectorList const &rays)
{
AsciiPrinter P(Stderr);
P<<coneGroebnerBasis<<idealGroebnerBasis;
IntegerVectorList::const_iterator i=ridges.begin();
for(IntegerVectorList::const_iterator j=rays.begin();j!=rays.end();j++,i++)
{
changeCone(coneGroebnerBasis, idealGroebnerBasis,*i,*j);
P<<"NEW CONEGB:"<<coneGroebnerBasis;
P<<"NEW IDEALGB:"<<idealGroebnerBasis;
}
}
|