File: app_realroots.cpp

package info (click to toggle)
gfan 0.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,372 kB
  • sloc: cpp: 53,144; makefile: 556
file content (348 lines) | stat: -rw-r--r-- 8,283 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#include "dimension.h"
#include "printer.h"
#include "parser.h"
#include "gfanapplication.h"
#include "division.h"
#include "field_rationals.h"
#include "buchberger.h"

class RealRootsApplication : public GFanApplication
{
public:
PolynomialSet sturmPolynomials(Polynomial  f1)
{
    Polynomial f2=f1.derivative();

    PolynomialRing theRing=f1.getRing();
    PolynomialSet result(theRing);
    result.push_back(f1);
    while(!f2.isZero())
      {
	result.push_back(f2);
	PolynomialSet g(theRing);
	Polynomial temp=f2;
	g.push_back(f2);
	g.markAndScale(LexicographicTermOrder());
	f2=(f1-f1)-division(f1,g,LexicographicTermOrder());
	f1=temp;
      }
    return result;
}



int numberOfSignChangesAtMinusInfinity(PolynomialSet const &l)
{
	int ret=0;
	int sign=0;
	for(PolynomialSet::const_iterator i=l.begin();i!=l.end();i++)
	{
		Polynomial p=*i;
		p.mark(LexicographicTermOrder());
		int newSign=p.getMarked().c.sign()*(1-2*(p.getMarked().m.exponent[0]&1));
		if(newSign && (newSign!=sign))
		{
			ret++;
			sign=newSign;
		}
	}
	return ret;
}


int numberOfSignChangesAtInfinity(PolynomialSet const &l)
{
	int ret=0;
	int sign=0;
	for(PolynomialSet::const_iterator i=l.begin();i!=l.end();i++)
	{
		Polynomial p=*i;
		p.mark(LexicographicTermOrder());
		int newSign=p.getMarked().c.sign();
		if(newSign && (newSign!=sign))
		{
			ret++;
			sign=newSign;
		}
	}
	return ret;
}


int numberOfSignChanges(PolynomialSet const &l, FieldElement const &a)
{
	int ret=0;
	int sign=0;
	for(PolynomialSet::const_iterator i=l.begin();i!=l.end();i++)
	{
		FieldElement v=i->evaluate(a);
		int newSign=v.sign();
		if(newSign && (newSign!=sign))
		{
			ret++;
			sign=newSign;
		}
	}
	return ret;
}

/**
 * Returns a negative number less than all roots of the polynomial whose Sturm sequence is given.
 */
FieldElement lowerBoundForRoots(PolynomialSet const &l)
{
	FieldElement ret=Q.zHomomorphism(-1);
	while(numberOfSignChangesAtMinusInfinity(l)!=numberOfSignChanges(l,ret))ret*=Q.zHomomorphism(2);
	return ret-Q.zHomomorphism(1);
}

FieldElement upperBoundForRoots(PolynomialSet const &l)
{
	FieldElement ret=Q.zHomomorphism(1);
	while(numberOfSignChangesAtInfinity(l)!=numberOfSignChanges(l,ret))ret*=Q.zHomomorphism(2);
	return ret+Q.zHomomorphism(1);
}

list<FieldElement> intervals(PolynomialSet const &l)
{
	list<FieldElement> ret;
	FieldElement lo(lowerBoundForRoots(l));

//	ret.push_back(a);
	while(1)
	{
		FieldElement hi=upperBoundForRoots(l);
	int cLo=numberOfSignChanges(l,lo);
	int cHi=numberOfSignChanges(l,hi);
	if(cLo<=cHi)break;
	{
		while(cHi!=cLo-1)
		{
			FieldElement med=(hi+lo)*Q.zHomomorphism(2).inverse();
			int cMed=numberOfSignChanges(l,med);
			if(cMed==cLo)
			{
				lo=med;
				cLo=cMed;
			}
			else
			{
				hi=med;
				cHi=cMed;
			}
		}
		ret.push_back(lo);
		ret.push_back(hi);
	}
	lo=hi;
	}
	return ret;
}

list<FieldElement> narrow(PolynomialSet const &l, list<FieldElement> intervals, FieldElement epsilon)
{
	list<FieldElement> ret;

	for(list<FieldElement>::const_iterator i=intervals.begin();i!=intervals.end();i++)
	{
		FieldElement lo=*i;i++;
		FieldElement hi=*i;

		while((hi-lo-epsilon).sign()>0)
		{
			FieldElement med=(hi+lo)*Q.zHomomorphism(2).inverse();
			if(numberOfSignChanges(l,med)==numberOfSignChanges(l,hi))
				hi=med;
			else
				lo=med;
		}
		ret.push_back(lo);
		ret.push_back(hi);
	}
	return ret;
}

//Returns a length that fist in between any two consequtive intervals
FieldElement smallestDistance(list<FieldElement> intervals)
{
	FieldElement ret=Q.zHomomorphism(1000);
	if(intervals.size()>=4)
	{
		list<FieldElement>::const_iterator i=intervals.begin();
		i++;
		for(;i!=intervals.end();i++)
		{
			FieldElement a=*i;i++;
			FieldElement diff=*i-a;
			if((diff-ret).sign()<0)ret=diff;
		}
	}
	return ret;
}
/*int numberOfRootsBetweenMinusInfinityAndHere(FieldElement )
{

}*/

bool includeInDefaultInstallation()
  {
    return false;
  }
  const char *helpText()
  {
    return "Not working yet. Given generators for a zero-dimensional ideal this program will compute all real points on the variety.\n";
  }
  RealRootsApplication() {
    registerOptions();
  }
  const char *name()
  {
    return "_realroots";
  }
  int main()
  {
    FileParser P(Stdin);

    PolynomialSet g=P.parsePolynomialSetWithRing();
    PolynomialRing r=g.getRing();
    int n=r.getNumberOfVariables();
//    Polynomial f1=P.parsePolynomialWithRing();
    WeightReverseLexicographicTermOrder T(IntegerVector::allOnes(n));
    buchberger(&g,T);
    debug<<g;
    int d=krullDimension(g);
    if(0!=d)
    {
		debug<<"Input ideal is not zero-dimensional.\n";
    	assert(0);
    }

    PolynomialRing r2(r.getField(),1);
    PolynomialSet projectionPolys(r2);

    for(int i=0;i<n;i++)
    {
    	LexicographicTermOrder T((i+1)%n);

    	buchberger(&g,T);

    	debug<<g;

    	list<int> l;
    	l.push_back(i);
    	PolynomialSet intersection=g.polynomialRingIntersection(r2,&l);
    	assert(intersection.size()==1);
    	projectionPolys.push_back(*intersection.begin());
    }
    debug<<projectionPolys;

    PolynomialSetList sturmPolys;
    for(PolynomialSet::const_iterator i=projectionPolys.begin();i!=projectionPolys.end();i++)
    {
			sturmPolys.push_back(sturmPolynomials(*i));
    	}
    debug.printPolynomialSetList(sturmPolys);


    FieldElement bound=Q.zHomomorphism(1);
    FieldElement distance=Q.zHomomorphism(1);
    for(PolynomialSetList::const_iterator i=sturmPolys.begin();i!=sturmPolys.end();i++)
    {
    	debug<<"Lower "<< lowerBoundForRoots(*i)<<"\n";
    	debug<<"Upper "<< upperBoundForRoots(*i)<<"\n";
    	debug<<"Sign changes "<< numberOfSignChangesAtMinusInfinity(*i)<<"\n";
    	FieldElement s=Q.zHomomorphism(-10000);
    	debug<<"Sign changes "<< numberOfSignChanges(*i,s)<<"\n";
    	FieldElement t=Q.zHomomorphism(100000);
    	debug<<"Sign changes "<< numberOfSignChanges(*i,t)<<"\n";
    	debug<<"Sign changes "<< numberOfSignChangesAtInfinity(*i)<<"\n";

    	list<FieldElement> l=intervals(*i);
    	FieldElement epsilon=(upperBoundForRoots(*i)-lowerBoundForRoots(*i))*Q.zHomomorphism(100).inverse();
    	l=narrow(*i,l,epsilon);


    	for(list<FieldElement>::const_iterator j=l.begin();j!=l.end();j++)
    		debug<<*j<<" "<< fieldElementToFloatingPoint(*j)<<"\n";

    	FieldElement b=upperBoundForRoots(*i)-lowerBoundForRoots(*i);
//    	if(bound<b)bound=b;
//    	FieldElement d=smallestDistance(l);
//    	if(d<distance)distance=d;
    }
/*
    FieldElement epsilon2=distance/bound; //<------------------fix this
	l=narrow(*i,l,epsilon);

	FieldElement delta=epsilon/bound;//<--------------------fix this

	PolynomialRing r3=r.withVariablesAppended("W");
	Polynomial f=-r3.ithVariable(n);
	FieldElement multiplier=Q.zHomomorphism(1);
	for(int i=0;i<n;i++)
	{
		f+=multiplier*r3.ithVariable(i);
		multiplier*=delta;
	}
	PolynomialSet g2=g.embeddedInto(r3);
	g2.push_back(f);
*/


/*    FieldRationalFunctions k(r.getField(),"t");
    PolynomialRing r2(k,n+1);
    Polynomial generic(r2)=-r2.ithVariable(n);
    for(int i=0;i<n;i++)
    	generic+=k.exponent(i)*r2.ithVariable(i);

    PolynomialSet g2(r2);
    g2.push_back(generic);

    for(PolynomialSet::const_iterator i=g.begin();i!=g.end();i++)
    {
    	Polynomial f(r2);
    	for(TermMap::const_iterator j=g.begin();j!=g.end();j++)
    	{
    		f+=Term(k.fromCoefficientField(),Monomial(r2,j->first.m.v));
    	}
    	g2.push_back(f);
    }
    pout << g2;
    LexicographicTermOrder T2;
    buchberger(g2,T2);
    Polynomial p(r2);
    for(PolynomialSet::const_iterator i=g2.begin();i!=g2.end();i++)
    {
    	if(i->numberOfVariablesInUseConsecutive()==1)p=*i;
    }

    PolynomialRing r3(k,1);

*/



//AsciiPrinter(Stdout).printPolynomialSet(result);

/*	if(evaluateOption.getValue())
      {
	IntegerVector v=P.parseIntegerVector();
	for(int i=0;i<v.size();i++)
	  {
	    FieldElement x=Q.zHomomorphism(v[i]);
	    AsciiPrinter(Stdout).printString("Evaluating in ");
	    AsciiPrinter(Stdout).printFieldElement(x);
	    AsciiPrinter(Stdout).printNewLine();
	    for(PolynomialSet::const_iterator j=result.begin();j!=result.end();j++)
	      {
		AsciiPrinter(Stdout).printFieldElement(j->evaluate(x));
		AsciiPrinter(Stdout).printNewLine();
	      }
	  }
      }
*/
    return 0;
  }
};

static RealRootsApplication theApplication;