1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
#include "GArgs.h"
#include "gff_utils.h"
#include <ctype.h>
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#define VERSION "0.12.7"
#define USAGE "gffread v" VERSION ". Usage:\n\
gffread [-g <genomic_seqs_fasta> | <dir>] [-s <seq_info.fsize>] \n\
[-o <outfile>] [-t <trackname>] [-r [<strand>]<chr>:<start>-<end> [-R]]\n\
[--jmatch <chr>:<start>-<end>] [--no-pseudo] \n\
[-CTVNJMKQAFPGUBHZWTOLE] [-w <exons.fa>] [-x <cds.fa>] [-y <tr_cds.fa>]\n\
[-j ][--ids <IDs.lst> | --nids <IDs.lst>] [--attrs <attr-list>] [-i <maxintron>]\n\
[--stream] [--bed | --gtf | --tlf] [--table <attrlist>] [--sort-by <ref.lst>]\n\
[<input_gff>] \n\n\
Filter, convert or cluster GFF/GTF/BED records, extract the sequence of\n\
transcripts (exon or CDS) and more.\n\
By default (i.e. without -O) only transcripts are processed, discarding any\n\
other non-transcript features. Default output is a simplified GFF3 with only\n\
the basic attributes.\n\
\n\
Options:\n\
--ids discard records/transcripts if their IDs are not listed in <IDs.lst>\n\
--nids discard records/transcripts if their IDs are listed in <IDs.lst>\n\
-i discard transcripts having an intron larger than <maxintron>\n\
-l discard transcripts shorter than <minlen> bases\n\
-r only show transcripts overlapping coordinate range <start>..<end>\n\
(on chromosome/contig <chr>, strand <strand> if provided)\n\
-R for -r option, discard all transcripts that are not fully \n\
contained within the given range\n\
--jmatch only output transcripts matching the given junction\n\
-U discard single-exon transcripts\n\
-C coding only: discard mRNAs that have no CDS features\n\
--nc non-coding only: discard mRNAs that have CDS features\n\
--ignore-locus : discard locus features and attributes found in the input\n\
-A use the description field from <seq_info.fsize> and add it\n\
as the value for a 'descr' attribute to the GFF record\n\
-s <seq_info.fsize> is a tab-delimited file providing this info\n\
for each of the mapped sequences:\n\
<seq-name> <seq-length> <seq-description>\n\
(useful for -A option with mRNA/EST/protein mappings)\n\
Sorting: (by default, chromosomes are kept in the order they were found)\n\
--sort-alpha : chromosomes (reference sequences) are sorted alphabetically\n\
--sort-by : sort the reference sequences by the order in which their\n\
names are given in the <refseq.lst> file\n\
Misc options: \n\
-F keep all GFF attributes (for non-exon features)\n\
--keep-exon-attrs : for -F option, do not attempt to reduce redundant\n\
exon/CDS attributes\n\
-G do not keep exon attributes, move them to the transcript feature\n\
(for GFF3 output)\n\
--attrs <attr-list> only output the GTF/GFF attributes listed in <attr-list>\n\
which is a comma delimited list of attribute names to\n\
--keep-genes : in transcript-only mode (default), also preserve gene records\n\
--keep-comments: for GFF3 input/output, try to preserve comments\n\
-O process other non-transcript GFF records (by default non-transcript\n\
records are ignored)\n\
-V discard any mRNAs with CDS having in-frame stop codons (requires -g)\n\
-H for -V option, check and adjust the starting CDS phase\n\
if the original phase leads to a translation with an \n\
in-frame stop codon\n\
-B for -V option, single-exon transcripts are also checked on the\n\
opposite strand (requires -g)\n\
-P add transcript level GFF attributes about the coding status of each\n\
transcript, including partialness or in-frame stop codons (requires -g)\n\
--add-hasCDS : add a \"hasCDS\" attribute with value \"true\" for transcripts\n\
that have CDS features\n\
--adj-stop stop codon adjustment: enables -P and performs automatic\n\
adjustment of the CDS stop coordinate if premature or downstream\n\
-N discard multi-exon mRNAs that have any intron with a non-canonical\n\
splice site consensus (i.e. not GT-AG, GC-AG or AT-AC)\n\
-J discard any mRNAs that either lack initial START codon\n\
or the terminal STOP codon, or have an in-frame stop codon\n\
(i.e. only print mRNAs with a complete CDS)\n\
--no-pseudo: filter out records matching the 'pseudo' keyword\n\
--in-bed: input should be parsed as BED format (automatic if the input\n\
filename ends with .bed*)\n\
--in-tlf: input GFF-like one-line-per-transcript format without exon/CDS\n\
features (see --tlf option below); automatic if the input\n\
filename ends with .tlf)\n\
--stream: fast processing of input GFF/BED transcripts as they are received\n\
((no sorting, exons must be grouped by transcript in the input data)\n\
Clustering:\n\
-M/--merge : cluster the input transcripts into loci, discarding\n\
\"redundant\" transcripts (those with the same exact introns\n\
and fully contained or equal boundaries)\n\
-d <dupinfo> : for -M option, write duplication info to file <dupinfo>\n\
--cluster-only: same as -M/--merge but without discarding any of the\n\
\"duplicate\" transcripts, only create \"locus\" features\n\
-K for -M option: also discard as redundant the shorter, fully contained\n\
transcripts (intron chains matching a part of the container)\n\
-Q for -M option, no longer require boundary containment when assessing\n\
redundancy (can be combined with -K); only introns have to match for\n\
multi-exon transcripts, and >=80% overlap for single-exon transcripts\n\
-Y for -M option, enforce -Q but also discard overlapping single-exon \n\
transcripts, even on the opposite strand (can be combined with -K)\n\
Output options:\n\
--force-exons: make sure that the lowest level GFF features are considered\n\
\"exon\" features\n\
--gene2exon: for single-line genes not parenting any transcripts, add an\n\
exon feature spanning the entire gene (treat it as a transcript)\n\
--t-adopt: try to find a parent gene overlapping/containing a transcript\n\
that does not have any explicit gene Parent\n\
-D decode url encoded characters within attributes\n\
-Z merge very close exons into a single exon (when intron size<4)\n\
-g full path to a multi-fasta file with the genomic sequences\n\
for all input mappings, OR a directory with single-fasta files\n\
(one per genomic sequence, with file names matching sequence names)\n\
-j output the junctions and the corresponding transcripts\n\
-w write a fasta file with spliced exons for each transcript\n\
--w-add <N> for the -w option, extract additional <N> bases\n\
both upstream and downstream of the transcript boundaries\n\
--w-nocds for -w, disable the output of CDS info in the FASTA file\n\
-x write a fasta file with spliced CDS for each GFF transcript\n\
-y write a protein fasta file with the translation of CDS for each record\n\
-W for -w, -x and -y options, write in the FASTA defline all the exon\n\
coordinates projected onto the spliced sequence;\n\
-S for -y option, use '*' instead of '.' as stop codon translation\n\
-L Ensembl GTF to GFF3 conversion, adds version to IDs\n\
-m <chr_replace> is a name mapping table for converting reference \n\
sequence names, having this 2-column format:\n\
<original_ref_ID> <new_ref_ID>\n\
-t use <trackname> in the 2nd column of each GFF/GTF output line\n\
-o write the output records into <outfile> instead of stdout\n\
-T main output will be GTF instead of GFF3\n\
--bed output records in BED format instead of default GFF3\n\
--tlf output \"transcript line format\" which is like GFF\n\
but with exons and CDS related features stored as GFF \n\
attributes in the transcript feature line, like this:\n\
exoncount=N;exons=<exons>;CDSphase=<N>;CDS=<CDScoords> \n\
<exons> is a comma-delimited list of exon_start-exon_end coordinates;\n\
<CDScoords> is CDS_start:CDS_end coordinates or a list like <exons>\n\
--table output a simple tab delimited format instead of GFF, with columns\n\
having the values of GFF attributes given in <attrlist>; special\n\
pseudo-attributes (prefixed by @) are recognized:\n\
@id, @geneid, @chr, @start, @end, @strand, @numexons, @exons, \n\
@cds, @covlen, @cdslen\n\
If any of -w/-y/-x FASTA output files are enabled, the same fields\n\
(excluding @id) are appended to the definition line of corresponding\n\
FASTA records\n\
-v,-E expose (warn about) duplicate transcript IDs and other potential\n\
problems with the given GFF/GTF records\n\
"
GStr sortBy; //file name with chromosomes listed in the desired order
bool BEDinput=false;
bool TLFinput=false;
//bool protmap=false;
//int maxintron=999000000;
//bool mergeCloseExons=false;
//range filter:
GffLoader gffloader;
GList<GenomicSeqData> g_data(true,true,true); //list of GFF records by genomic seq
void loadIDlist(FILE* f, GStrSet<> & idhash) {
GLineReader fr(f);
while (!fr.isEof()) {
char* line=fr.getLine();
if (line==NULL) break;
if (line[0]=='#') continue; //skip comments
GDynArray<char*> ids;
strsplit(line, ids);
for (uint i=0;i<ids.Count();i++) {
if (strlen(ids[i])>0)
idhash.Add(ids[i]);
}
}
}
void loadSeqInfo(FILE* f, GHash<SeqInfo*> &si) {
GLineReader fr(f);
while (!fr.isEof()) {
char* line=fr.getLine();
if (line==NULL) break;
char* id=line;
char* lenstr=NULL;
char* text=NULL;
char* p=line;
while (*p!=0 && !isspace(*p)) p++;
if (*p==0) continue;
*p=0;p++;
while (*p==' ' || *p=='\t') p++;
if (*p==0) continue;
lenstr=p;
while (*p!=0 && !isspace(*p)) p++;
if (*p!=0) { *p=0;p++; }
while (*p==' ' || *p=='\t') p++;
if (*p!=0) text=p; //else text remains NULL
int len=0;
if (!parseInt(lenstr,len)) {
GMessage("Warning: could not parse sequence length: %s %s\n",
id, lenstr);
continue;
}
// --- here we have finished parsing the line
si.Add(id, new SeqInfo(len,text));
} //while lines
}
void getAttrList(GStr& s) {
if (s.is_empty()) return;
s.startTokenize(",;:", tkCharSet);
GStr w;
while (s.nextToken(w)) {
if (w.length()>0)
attrList.Add(w.chars());
}
}
void setTableFormat(GStr& s) {
if (s.is_empty()) return;
GHash<ETableFieldType> specialFields;
specialFields.Add("chr", ctfGFF_chr);
specialFields.Add("id", ctfGFF_ID);
specialFields.Add("geneid", ctfGFF_geneID);
specialFields.Add("genename", ctfGFF_geneName);
specialFields.Add("parent", ctfGFF_Parent);
specialFields.Add("feature", ctfGFF_feature);
specialFields.Add("start", ctfGFF_start);
specialFields.Add("end", ctfGFF_end);
specialFields.Add("strand", ctfGFF_strand);
specialFields.Add("numexons", ctfGFF_numexons);
specialFields.Add("exons", ctfGFF_exons);
specialFields.Add("cds", ctfGFF_cds);
specialFields.Add("covlen", ctfGFF_covlen);
specialFields.Add("cdslen", ctfGFF_cdslen);
s.startTokenize(" ,;.:", tkCharSet);
GStr w;
while (s.nextToken(w)) {
if (w[0]=='@') {
w=w.substr(1);
w.lower();
ETableFieldType* v=specialFields.Find(w.chars());
if (v!=NULL) {
CTableField tcol(*v);
tableCols.Add(tcol);
}
else GMessage("Warning: table field '@%s' not recognized!\n",w.chars());
continue;
}
if (w=="ID" || w=="transcript_id") {
CTableField tcol(ctfGFF_ID);
tableCols.Add(tcol);
continue;
}
if (w=="geneID" || w=="gene_id") {
CTableField tcol(ctfGFF_geneID);
tableCols.Add(tcol);
continue;
}
if (w=="Parent") {
CTableField tcol(ctfGFF_Parent);
tableCols.Add(tcol);
continue;
}
CTableField col(w);
tableCols.Add(col);
}
}
void loadRefTable(FILE* f, GHash<RefTran*>& rt) {
GLineReader fr(f);
char* line=NULL;
while ((line=fr.getLine())) {
char* orig_id=line;
char* p=line;
while (*p!=0 && !isspace(*p)) p++;
if (*p==0) continue;
*p=0;p++;//split the line here
while (*p==' ' || *p=='\t') p++;
if (*p==0) continue;
rt.Add(orig_id, new RefTran(p));
} //while lines
}
void openfw(FILE* &f, GArgs& args, char opt) {
GStr s=args.getOpt(opt);
if (!s.is_empty()) {
if (s=='-')
f=stdout;
else {
f=fopen(s,"w");
if (f==NULL) GError("Error creating file: %s\n", s.chars());
}
}
}
#define FWCLOSE(fh) if (fh!=NULL && fh!=stdout) fclose(fh)
void printGff3Header(FILE* f, GArgs& args) {
if (gffloader.keepGff3Comments) {
for (int i=0;i<gffloader.headerLines.Count();i++) {
fprintf(f, "%s\n", gffloader.headerLines[i]);
}
} else {
fprintf(f, "##gff-version 3\n");
fprintf(f, "# gffread v" VERSION "\n");
fprintf(f, "# ");args.printCmdLine(f);
}
}
void printGSeqHeader(FILE* f, GenomicSeqData* gdata) {
if (f && gffloader.keepGff3Comments && gdata->seqreg_start>0 && gdata->seqreg_end>0)
fprintf(f, "##sequence-region %s %d %d\n", gdata->gseq_name,
gdata->seqreg_start, gdata->seqreg_end);
}
void processGffComment(const char* cmline, GfList* gflst) {
if (cmline[0]!='#') return;
const char* p=cmline;
while (*p=='#') p++;
GStr s(p);
//this can be called only after gffloader initialization
// so we can use gffloader.names->gseqs.addName()
s.startTokenize("\t ", tkCharSet);
GStr w;
if (s.nextToken(w) && w=="sequence-region") {
GStr chr, wend;
if (s.nextToken(chr) && s.nextToken(w) && s.nextToken(wend)) {
int gseq_id=gffloader.names->gseqs.addName(chr.chars());
if (gseq_id>=0) {
GenomicSeqData* gseqdata=getGSeqData(g_data, gseq_id);
gseqdata->seqreg_start=w.asInt();
gseqdata->seqreg_end=wend.asInt();
}
else GError("Error adding ref seq ID %s\n", chr.chars());
}
return;
}
if (gflst->Count()==0) {
//initial Gff3 header, store it
char* hl=Gstrdup(cmline);
gffloader.headerLines.Add(hl);
}
}
void printGffObj(FILE* f, GffObj* gfo, GStr& locname, GffPrintMode exonPrinting, int& out_counter) {
GffObj& t=*gfo;
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL || !T_PRINTABLE(t.udata)) return;
//if (t.exons.Count()==0 && t.children.Count()==0 && forceExons)
// t.addExonSegment(t.start,t.end);
T_NO_PRINT(t.udata);
if (!fmtGFF3 && !gfo->isTranscript())
return; //only GFF3 prints non-transcript records (incl. parent genes)
t.addAttr("locus", locname.chars());
out_counter++;
if (fmtGFF3) {
//print the parent first, if any and if not printed already
if (t.parent!=NULL && T_PRINTABLE(t.parent->udata)) {
GTData* pdata=(GTData*)(t.parent->uptr);
if (pdata && pdata->geneinfo!=NULL)
pdata->geneinfo->finalize();
t.parent->addAttr("locus", locname.chars());
t.parent->printGxf(f, exonPrinting, tracklabel, NULL, decodeChars);
T_NO_PRINT(t.parent->udata);
}
}
t.printGxf(f, exonPrinting, tracklabel, NULL, decodeChars);
}
void printAsTable(FILE* f, GffObj* gfo, int* out_counter=NULL) {
GffObj& t=*gfo;
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL || !T_PRINTABLE(t.udata)) return;
T_NO_PRINT(t.udata);
if (out_counter!=NULL) (*out_counter)++;
//print the parent first, if any and if not printed already
if (t.parent!=NULL && T_PRINTABLE(t.parent->udata)) {
GTData* pdata=(GTData*)(t.parent->uptr);
if (pdata && pdata->geneinfo!=NULL)
pdata->geneinfo->finalize();
//t.parent->addAttr("locus", locname.chars());
//(*out_counter)++; ?
printTableData(f, *t.parent);
T_NO_PRINT(t.parent->udata);
}
printTableData(f, *gfo);
}
void shutDown() {
seqinfo.Clear();
//if (faseq!=NULL) delete faseq;
//if (gcdb!=NULL) delete gcdb;
delete fltRange;
delete fltJunction;
FWCLOSE(f_out);
FWCLOSE(f_w);
FWCLOSE(f_x);
FWCLOSE(f_y);
FWCLOSE(f_j);
}
int main(int argc, char* argv[]) {
GArgs args(argc, argv,
"version;debug;merge;stream;adj-stop;bed;in-bed;tlf;in-tlf;cluster-only;nc;cov-info;help;"
"sort-alpha;keep-genes;w-nocds;attrs=;w-add=;ids=;nids=;jmatch=;gtf;keep-comments;keep-exon-attrs;force-exons;t-adopt;gene2exon;"
"ignore-locus;no-pseudo;table=sort-by=hvOUNHPWCVJMKQYTDARSZFGLEBm:g:i:r:s:l:t:o:w:x:y:j:d:");
args.printError(USAGE, true);
int numfiles = args.startNonOpt();
if (args.getOpt("version")) {
printf(VERSION"\n");
exit(0);
}
if (args.getOpt('h') || args.getOpt("help") || ( numfiles==0 && !haveStdInput())) {
GMessage("%s",USAGE);
exit(1);
}
debugMode=(args.getOpt("debug")!=NULL);
decodeChars=(args.getOpt('D')!=NULL);
gffloader.forceExons=(args.getOpt("force-exons")!=NULL);
gffloader.streamIn=(args.getOpt("stream")!=NULL);
gffloader.noPseudo=(args.getOpt("no-pseudo")!=NULL);
gffloader.ignoreLocus=(args.getOpt("ignore-locus")!=NULL);
gffloader.transcriptsOnly=(args.getOpt('O')==NULL);
//sortByLoc=(args.getOpt('S')!=NULL);
addDescr=(args.getOpt('A')!=NULL);
verbose=(args.getOpt('v')!=NULL || args.getOpt('E')!=NULL);
wCDSonly=(args.getOpt('C')!=NULL);
wNConly=(args.getOpt("nc")!=NULL);
addCDSattrs=(args.getOpt('P')!=NULL);
add_hasCDS=(args.getOpt("add-hasCDS")!=NULL);
adjustStop=(args.getOpt("adj-stop")!=NULL);
if (adjustStop) addCDSattrs=true;
validCDSonly=(args.getOpt('V')!=NULL);
altPhases=(args.getOpt('H')!=NULL);
fmtGTF=(args.getOpt('T')!=NULL || args.getOpt("gtf")!=NULL); //switch output format to GTF
fmtBED=(args.getOpt("bed")!=NULL); //BED output
fmtTLF=(args.getOpt("tlf")!=NULL); //TLF output
if (fmtGTF || fmtBED || fmtTLF) {
if (!gffloader.transcriptsOnly) {
GMessage("Error: option -O is only supported with GFF3 output");
exit(1);
}
fmtGFF3=false;
}
BEDinput=(args.getOpt("in-bed")!=NULL);
TLFinput=(args.getOpt("in-tlf")!=NULL);
bothStrands=(args.getOpt('B')!=NULL);
fullCDSonly=(args.getOpt('J')!=NULL);
spliceCheck=(args.getOpt('N')!=NULL);
StarStop=(args.getOpt('S')!=NULL);
gffloader.keepGenes=(args.getOpt("keep-genes")!=NULL);
gffloader.trAdoption=(args.getOpt("t-adopt")!=NULL);
gffloader.keepGff3Comments=(args.getOpt("keep-comments")!=NULL);
gffloader.sortRefsAlpha=(args.getOpt("sort-alpha")!=NULL);
if (args.getOpt("sort-by")!=NULL) {
if (gffloader.sortRefsAlpha)
GError("Error: options --sort-by and --sort-alpha are mutually exclusive!\n");
sortBy=args.getOpt("sort-by");
}
if (!sortBy.is_empty())
gffloader.loadRefNames(sortBy);
gffloader.gene2exon=(args.getOpt("gene2exon")!=NULL);
gffloader.matchAllIntrons=(args.getOpt('K')==NULL);
gffloader.fuzzSpan=(args.getOpt('Q')!=NULL);
gffloader.dOvlSET=(args.getOpt('Y')!=NULL);
if (args.getOpt('M') || args.getOpt("merge")) {
gffloader.doCluster=true;
gffloader.collapseRedundant=true;
} else {
if (!gffloader.matchAllIntrons || gffloader.fuzzSpan || gffloader.dOvlSET) {
GMessage("%s",USAGE);
GMessage("Error: options -K,-Q,-Y require -M/--merge option!\n");
exit(1);
}
}
if (args.getOpt("cluster-only")) {
gffloader.doCluster=true;
gffloader.collapseRedundant=false;
if (!gffloader.matchAllIntrons || gffloader.fuzzSpan || gffloader.dOvlSET) {
GMessage("%s",USAGE);
GMessage("Error: option -K,-Q,-Y have no effect with --cluster-only.\n");
exit(1);
}
}
if (gffloader.dOvlSET)
gffloader.fuzzSpan=true; //-Q enforced by -Y
covInfo=(args.getOpt("cov-info"));
if (covInfo) gffloader.doCluster=true; //need to collapse overlapping exons
if (fullCDSonly) validCDSonly=true;
if (verbose) {
fprintf(stderr, "Command line was:\n");
args.printCmdLine(stderr);
}
gffloader.fullAttributes=(args.getOpt('F')!=NULL);
gffloader.keep_AllExonAttrs=(args.getOpt("keep-exon-attrs")!=NULL);
if (gffloader.keep_AllExonAttrs && !gffloader.fullAttributes) {
GMessage("Error: option --keep-exon-attrs requires option -F !\n");
exit(0);
}
if (args.getOpt('G')==NULL)
gffloader.gatherExonAttrs=!gffloader.fullAttributes;
else {
gffloader.gatherExonAttrs=true;
gffloader.fullAttributes=true;
}
if (gffloader.noPseudo && !gffloader.fullAttributes) {
gffloader.gatherExonAttrs=true;
gffloader.fullAttributes=true;
}
gffloader.ensemblProc=(args.getOpt('L')!=NULL);
if (gffloader.ensemblProc) {
gffloader.fullAttributes=true;
gffloader.gatherExonAttrs=false;
//sortByLoc=true;
}
tableFormat=args.getOpt("table");
if (!tableFormat.is_empty()) {
setTableFormat(tableFormat);
fmtTable=true;
fmtGFF3=false;
gffloader.fullAttributes=true;
}
gffloader.mergeCloseExons=(args.getOpt('Z')!=NULL);
multiExon=(args.getOpt('U')!=NULL);
writeExonSegs=(args.getOpt('W')!=NULL);
tracklabel=args.getOpt('t');
if (args.getOpt('g'))
gfasta.init(args.getOpt('g'));
//if (gfasta.fastaPath!=NULL)
// sortByLoc=true; //enforce sorting by chromosome/contig
GStr s=args.getOpt('i');
if (!s.is_empty()) maxintron=s.asInt();
s=args.getOpt('l');
if (!s.is_empty()) minLen=s.asInt();
TFilters=(multiExon || wCDSonly || wNConly); //TODO: all transcript filters should be included here through validateGffRec()
FILE* f_repl=NULL; //duplicate/collapsing info output file
s=args.getOpt('d');
if (!s.is_empty()) {
if (s=="-") f_repl=stdout;
else {
f_repl=fopen(s.chars(), "w");
if (f_repl==NULL) GError("Error creating file %s\n", s.chars());
}
}
s=args.getOpt("attrs");
if (!s.is_empty()) {
getAttrList(s);
gffloader.attrsFilter=(attrList.Count()>1);
gffloader.fullAttributes=true;
}
rfltWithin=(args.getOpt('R')!=NULL);
char* sz=args.getOpt('r');
if (sz) {
fltRange=new GRangeParser(sz);
if (fltRange->end==0) //end coordinate not given
fltRange->end=UINT_MAX;
} else {
if (rfltWithin)
GError("Error: option -R requires -r!\n");
}
sz=args.getOpt("jmatch");
if (sz) {
//TODO: check if this is a file?
fltJunction=new GRangeParser(sz);
if (fltJunction->strand=='.') fltJunction->strand=0;
} //gseq/range filtering
s=args.getOpt('m');
if (!s.is_empty()) {
FILE* ft=fopen(s,"r");
if (ft==NULL) GError("Error opening reference table: %s\n",s.chars());
loadRefTable(ft, reftbl);
fclose(ft);
}
s=args.getOpt('s');
if (!s.is_empty()) {
FILE* fsize=fopen(s,"r");
if (fsize==NULL) GError("Error opening info file: %s\n",s.chars());
loadSeqInfo(fsize, seqinfo);
fclose(fsize);
}
s=args.getOpt("ids");
if (s.is_empty()) {
s=args.getOpt("nids");
if (!s.is_empty())
IDflt=idFlt_Exclude;
} else {
IDflt=idFlt_Only;
}
if (!s.is_empty()) {
FILE* f=fopen(s,"r");
if (f==NULL) GError("Error opening ID list file: %s\n",s.chars());
loadIDlist(f, fltIDs);
if (fltIDs.Count()==0) {
GMessage("Warning: no IDs were loaded from file %s\n", s.chars());
IDflt=idFlt_None;
}
fclose(f);
}
openfw(f_out, args, 'o');
//if (f_out==NULL) f_out=stdout;
if (gfasta.fastaPath==NULL && (validCDSonly || spliceCheck || args.getOpt('w')!=NULL || args.getOpt('x')!=NULL || args.getOpt('y')!=NULL))
GError("Error: -g option is required for options -w, -x, -y, -V, -N, -M !\n");
openfw(f_w, args, 'w');
openfw(f_x, args, 'x');
openfw(f_y, args, 'y');
openfw(f_j, args, 'j');
s=args.getOpt("w-add");
if (!s.is_empty()) {
if (f_w==NULL) GError("Error: --w-add option requires -w option!\n");
wPadding=s.asInt();
}
if (f_w!=NULL && args.getOpt("w-nocds"))
wfaNoCDS=true;
if (f_out==NULL && f_w==NULL && f_x==NULL && f_y==NULL && f_j==NULL && !covInfo)
f_out=stdout;
//if (f_y!=NULL || f_x!=NULL) wCDSonly=true;
//useBadCDS=useBadCDS || (fgtfok==NULL && fgtfbad==NULL && f_y==NULL && f_x==NULL);
//GList<GffObj> gfkept(false,true); //unsorted, free items on delete
int out_counter=0; //number of records printed
if (fmtGTF)
exonPrinting = gffloader.forceExons ? pgtfBoth : pgtfAny;
else if (fmtBED)
exonPrinting=pgffBED;
else if (fmtTLF)
exonPrinting=pgffTLF;
else { //printing regular GFF3
exonPrinting = gffloader.forceExons ? pgffBoth : pgffAny;
}
while (true) {
GStr infile;
if (numfiles) {
infile=args.nextNonOpt();
if (infile.is_empty()) break;
if (infile=="-") { f_in=stdin; infile="stdin"; }
else if ((f_in=fopen(infile, "r"))==NULL)
GError("Error: cannot open input file %s!\n",infile.chars());
else fclose(f_in);
numfiles--;
}
else infile="-";
const char* fext=getFileExt(infile.chars());
if (BEDinput || (Gstricmp(fext, "bed")==0))
gffloader.BEDinput=true;
if (TLFinput || (Gstricmp(fext, "tlf")==0))
gffloader.TLFinput=true;
gffloader.openFile(infile);
if (gffloader.streamIn) { //streaming in - disable all bulk load features
gffloader.transcriptsOnly=true;
gffloader.doCluster=false;
covInfo=false;
}
gffloader.load(g_data, &processGffComment);
if (gffloader.streamIn) {
//we're done, GffLoader::load() took care of everything
shutDown();
return 0;
}
// will also place the transcripts in loci, if doCluster is enabled
if (gffloader.doCluster)
collectLocusData(g_data, covInfo);
if (numfiles==0) break;
}
if (covInfo) {
//report coverage info at STDOUT
uint64 f_bases=0;
uint64 r_bases=0;
uint64 u_bases=0;
for (int g=0;g<g_data.Count();g++) {
f_bases+=g_data[g]->f_bases;
r_bases+=g_data[g]->r_bases;
u_bases+=g_data[g]->u_bases;
}
fprintf(stdout, "Total bases covered by transcripts:\n");
if (f_bases>0) fprintf(stdout, "\t%" PRIu64 " on + strand\n", f_bases);
if (r_bases>0) fprintf(stdout, "\t%" PRIu64 " on - strand\n", r_bases);
if (u_bases>0) fprintf(stdout, "\t%" PRIu64 " on . strand\n", u_bases);
}
GStr loctrack("gffcl");
if (tracklabel) loctrack=tracklabel;
if (gffloader.sortRefsAlpha)
g_data.setSorted(&gseqCmpName);
bool firstGff3Print=fmtGFF3;
if (gffloader.doCluster) {
//grouped in loci
for (int g=0;g<g_data.Count();g++) {
GenomicSeqData* gdata=g_data[g];
bool firstGSeqHeader=fmtGFF3;
if (f_out && fmtGFF3 && gffloader.keepGff3Comments && gdata->seqreg_start>0)
fprintf(f_out, "##sequence-region %s %d %d\n", gdata->gseq_name,
gdata->seqreg_start, gdata->seqreg_end);
for (int l=0;l<gdata->loci.Count();l++) {
bool firstLocusPrint=true;
GffLocus& loc=*(gdata->loci[l]);
//check all non-replaced transcripts in this locus:
//int numvalid=0;
//int idxfirstvalid=-1;
for (int i=0;i<loc.rnas.Count();i++) {
GffObj& t=*(loc.rnas[i]);
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL) {
if (f_repl && T_DUPSHOWABLE(t.udata)) {
fprintf(f_repl, "%s", t.getID());
GTData* rby=tdata;
while (rby->replaced_by!=NULL) {
fprintf(f_repl," => %s", rby->replaced_by->getID());
T_NO_DUPSHOW(rby->rna->udata);
rby=(GTData*)(rby->replaced_by->uptr);
}
fprintf(f_repl, "\n");
}
T_NO_PRINT(t.udata);
if (verbose) {
GMessage("Info: %s discarded: superseded by %s\n",
t.getID(), tdata->replaced_by->getID());
}
continue;
}
//restore strand for dOvlSET
char orig_strand=T_OSTRAND(t.udata);
if (orig_strand!=0) t.strand=orig_strand;
/* -- transcripts are filtered upon loading
if (process_transcript(gfasta, t)) {
numvalid++;
if (idxfirstvalid<0) idxfirstvalid=i;
}
*/
} //for each transcript
int rnas_i=0;
//if (idxfirstvalid>=0) rnas_i=idxfirstvalid;
int gfs_i=0;
if (f_out) {
GStr locname("RLOC_");
locname.appendfmt("%08d",loc.locus_num);
//GMessage("Locus: %s (%d-%d), %d rnas, %d gfs\n", locname.chars(), loc.start, loc.end,
// loc.rnas.Count(), loc.gfs.Count());
while (gfs_i<loc.gfs.Count() || rnas_i<loc.rnas.Count()) {
if (gfs_i<loc.gfs.Count() && (rnas_i>=loc.rnas.Count() ||
loc.gfs[gfs_i]->start<=loc.rnas[rnas_i]->start) ) {
//print the gene object first
if (fmtGFF3) { //BED, TLF and GTF: only show transcripts
if (firstGff3Print) { printGff3Header(f_out, args);firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
if (firstLocusPrint) {
//loc.print(f_out, idxfirstvalid, locname, loctrack);
loc.print(f_out, 0, locname, loctrack);
firstLocusPrint=false;
}
printGffObj(f_out, loc.gfs[gfs_i], locname, exonPrinting, out_counter);
}
++gfs_i;
continue;
}
if (rnas_i<loc.rnas.Count()) {
//loc.rnas[rnas_i]->printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args); firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
if (firstLocusPrint) {
//loc.print(f_out, idxfirstvalid, locname, loctrack);
loc.print(f_out, 0, locname, loctrack);
firstLocusPrint=false;
}
}
if (fmtTable) printAsTable(f_out, loc.rnas[rnas_i], &out_counter);
else printGffObj(f_out, loc.rnas[rnas_i], locname, exonPrinting, out_counter);
++rnas_i;
}
}
}
}//for each locus
} //for each genomic sequence
} //if Clustering enabled
else { //no clustering
//not grouped into loci, print the rnas with their parents, if any
//int numvalid=0;
for (int g=0;g<g_data.Count();g++) {
GenomicSeqData* gdata=g_data[g];
bool firstGSeqHeader=fmtGFF3;
int gfs_i=0;
for (int m=0;m<gdata->rnas.Count();m++) {
GffObj& t=*(gdata->rnas[m]);
if (f_out && (fmtGFF3 || fmtTable)) {
//print other non-transcript (gene?) feature that might be there before t
while (gfs_i<gdata->gfs.Count() && gdata->gfs[gfs_i]->start<=t.start) {
GffObj& gfst=*(gdata->gfs[gfs_i]);
if (TFilters && gfst.isGene() && gfst.children.Count()==0) // gene with no children left, skip it if filters were applied
{ ++gfs_i; continue; }
if T_PRINTABLE(gfst.udata) { //never printed
T_NO_PRINT(gfst.udata);
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args);firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
gfst.printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
}
else printTableData(f_out, gfst);
}
++gfs_i;
}
}
GTData* tdata=(GTData*)(t.uptr);
if (tdata->replaced_by!=NULL) continue;
//if (process_transcript(gfasta, t)) {
// numvalid++;
if (f_out && T_PRINTABLE(t.udata) ) {
T_NO_PRINT(t.udata);
if (fmtGFF3 || fmtTable || t.isTranscript()) {
if (tdata->geneinfo)
tdata->geneinfo->finalize();
out_counter++;
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args);firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
}
//for GFF3 && table output, print the parent first, if any
if ((fmtGFF3 || fmtTable) && t.parent!=NULL && T_PRINTABLE(t.parent->udata)) {
//GTData* pdata=(GTData*)(t.parent->uptr);
//if (pdata && pdata->geneinfo!=NULL)
// pdata->geneinfo->finalize();
if (fmtTable)
printTableData(f_out, *(t.parent));
else { //GFF3 output
t.parent->printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
}
T_NO_PRINT(t.parent->udata);
}
if (fmtTable)
printTableData(f_out, t);
else
t.printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
}
}//GFF/GTF output requested
//} //valid transcript
} //for each rna
//print the rest of the isolated pseudo/gene/region features not printed yet
if (f_out && (fmtGFF3 || fmtTable)) {
while (gfs_i<gdata->gfs.Count()) {
GffObj& gfst=*(gdata->gfs[gfs_i]);
if (TFilters && gfst.isGene() && gfst.children.Count()==0) // gene with no children left, skip it if filters were applied
{ ++gfs_i; continue; }
if T_PRINTABLE(gfst.udata) { //never printed
T_NO_PRINT(gfst.udata);
if (fmtGFF3) {
if (firstGff3Print) { printGff3Header(f_out, args); firstGff3Print=false; }
if (firstGSeqHeader) { printGSeqHeader(f_out, gdata); firstGSeqHeader=false; }
gfst.printGxf(f_out, exonPrinting, tracklabel, NULL, decodeChars);
} else
printTableData(f_out, gfst);
}
++gfs_i;
}
}
} //for each genomic seq
} //no clustering
if (f_repl && f_repl!=stdout) fclose(f_repl);
shutDown();
}
|