File: threaded.h

package info (click to toggle)
gforth 0.6.2-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 8,268 kB
  • ctags: 1,534
  • sloc: ansic: 6,256; sh: 3,044; lisp: 1,788; makefile: 873; yacc: 186; sed: 141; lex: 104; awk: 21
file content (439 lines) | stat: -rw-r--r-- 13,926 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/* This file defines a number of threading schemes.

  Copyright (C) 1995, 1996,1997,1999,2003 Free Software Foundation, Inc.

  This file is part of Gforth.

  Gforth is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License
  as published by the Free Software Foundation; either version 2
  of the License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.


  This files defines macros for threading. Many sets of macros are
  defined. Functionally they have only one difference: Some implement
  direct threading, some indirect threading. The other differences are
  just variations to help GCC generate faster code for various
  machines.

  (Well, to tell the truth, there actually is another functional
  difference in some pathological cases: e.g., a '!' stores into the
  cell where the next executed word comes from; or, the next word
  executed comes from the top-of-stack. These differences are one of
  the reasons why GCC cannot produce the right variation by itself. We
  chose disallowing such practices and using the added implementation
  freedom to achieve a significant speedup, because these practices
  are not common in Forth (I have never heard of or seen anyone using
  them), and it is easy to circumvent problems: A control flow change
  will flush any prefetched words; you may want to do a "0
  drop" before that to write back the top-of-stack cache.)

  These macro sets are used in the following ways: After translation
  to C a typical primitive looks like

  ...
  {
  DEF_CA
  other declarations
  NEXT_P0;
  main part of the primitive
  NEXT_P1;
  store results to stack
  NEXT_P2;
  }

  DEF_CA and all the NEXT_P* together must implement NEXT; In the main
  part the instruction pointer can be read with IP, changed with
  INC_IP(const_inc), and the cell right behind the presently executing
  word (i.e. the value of *IP) is accessed with NEXT_INST.

  If a primitive does not fall through the main part, it has to do the
  rest by itself. If it changes ip, it has to redo NEXT_P0 (perhaps we
  should define a macro SET_IP).

  Some primitives (execute, dodefer) do not end with NEXT, but with
  EXEC(.). If NEXT_P0 has been called earlier, it has to perform
  "ip=IP;" to ensure that ip has the right value (NEXT_P0 may change
  it).

  Finally, there is NEXT1_P1 and NEXT1_P2, which are parts of EXEC
  (EXEC(XT) could be defined as "cfa=XT; NEXT1_P1; NEXT1_P2;" (is this
  true?)) and are used for making docol faster.

  We can define the ways in which these macros are used with a regular
  expression:

  For a primitive

  DEF_CA NEXT_P0 ( IP | INC_IP | NEXT_INST | ip=...; NEXT_P0 ) * ( NEXT_P1 NEXT_P2 | EXEC(...) )

  For a run-time routine, e.g., docol:
  PFA1(cfa) ( NEXT_P0 NEXT | cfa=...; NEXT1_P1; NEXT1_P2 | EXEC(...) )

  This comment does not yet describe all the dependences that the
  macros have to satisfy.

  To organize the former ifdef chaos, each path is separated
  This gives a quite impressive number of paths, but you clearly
  find things that go together.

  It should be possible to organize the whole thing in a way that
  contains less redundancy and allows a simpler description.

*/

#ifdef DOUBLY_INDIRECT
# ifndef DEBUG_DITC
#  define DEBUG_DITC 0
# endif
/* define to 1 if you want to check consistency */
#  define NEXT_P0	({cfa1=cfa; cfa=*ip;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); cfa=*ip;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA	Label ca;
#  define NEXT_P1	({\
  if (DEBUG_DITC && (cfa<=vm_prims+DOESJUMP || cfa>=vm_prims+npriminfos)) \
    fprintf(stderr,"NEXT encountered prim %p at ip=%p\n", cfa, ip); \
  ip++;})
#  define NEXT_P2	({ca=**cfa; goto *ca;})
#  define EXEC(XT)	({DEF_CA cfa=(XT);\
  if (DEBUG_DITC && (cfa>vm_prims+DOESJUMP && cfa<vm_prims+npriminfos)) \
    fprintf(stderr,"EXEC encountered xt %p at ip=%p, vm_prims=%p, xts=%p\n", cfa, ip, vm_prims, xts); \
 ca=**cfa; goto *ca;})

#elif defined(NO_IP)

#define NEXT_P0
#define SET_IP(target)	assert(0)
#define INC_IP(n)	((void)0)
#define DEF_CA
#define NEXT_P1
#define NEXT_P2		({goto *next_code;})
/* set next_code to the return address before performing EXEC */
#define EXEC(XT)	({cfa=(XT); goto **cfa;})

#else  /* !defined(DOUBLY_INDIRECT) && !defined(NO_IP) */

#if defined(DIRECT_THREADED)

/* This lets the compiler know that cfa is dead before; we place it at
   "goto *"s that perform direct threaded dispatch (i.e., not EXECUTE
   etc.), and thus do not reach doers, which would use cfa; the only
   way to a doer is through EXECUTE etc., which set the cfa
   themselves.

   Some of these direct threaded schemes use "cfa" to hold the code
   address in normal direct threaded code.  Of course we cannot use
   KILLS there.

   KILLS works by having an empty asm instruction, and claiming to the
   compiler that it writes to cfa.

   KILLS is optional.  You can write

#define KILLS

   and lose just a little performance.
*/
#define KILLS asm("":"=X"(cfa));

#ifndef THREADING_SCHEME
#define THREADING_SCHEME 6
#endif

#if THREADING_SCHEME==1
#warning direct threading scheme 1: autoinc, long latency, cfa live
#  define NEXT_P0	({cfa1=cfa; cfa=*ip++;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip-1)
#  define SET_IP(p)	({ip=(p); cfa=*ip++;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1
#  define NEXT_P2	({goto *cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==2
#warning direct threading scheme 2: autoinc, long latency, cfa dead
#  define NEXT_P0	(ip++)
#  define CFA		cfa
#  define IP		(ip-1)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*(ip-1))
#  define INC_IP(const_inc)	({ ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1
#  define NEXT_P2	({KILLS goto **(ip-1);})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif


#if THREADING_SCHEME==3
#warning direct threading scheme 3: autoinc, low latency, cfa live
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*ip)
#  define INC_IP(const_inc)	({ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1	({cfa=*ip++;})
#  define NEXT_P2	({goto *cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==4
#warning direct threading scheme 4: autoinc, low latency, cfa dead
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*ip)
#  define INC_IP(const_inc)	({ ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1
#  define NEXT_P2	({KILLS goto **(ip++);})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==5
#warning direct threading scheme 5: long latency, cfa live
#  define NEXT_P0	({cfa1=cfa; cfa=*ip;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); cfa=*ip;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1	(ip++)
#  define NEXT_P2	({goto *cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==6
#warning direct threading scheme 6: long latency, cfa dead
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*ip)
#  define INC_IP(const_inc)	({ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1	(ip++)
#  define NEXT_P2	({KILLS goto **(ip-1);})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif


#if THREADING_SCHEME==7
#warning direct threading scheme 7: low latency, cfa live
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*ip)
#  define INC_IP(const_inc)	({ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1	({cfa=*ip++;})
#  define NEXT_P2	({goto *cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==8
#warning direct threading scheme 8: cfa dead, i386 hack
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*IP)
#  define INC_IP(const_inc)	({ ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1	(ip++)
#  define NEXT_P2	({KILLS goto **(ip-1);})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==9
#warning direct threading scheme 9: Power/PPC hack, long latency
/* Power uses a prepare-to-branch instruction, and the latency between
   this inst and the branch is 5 cycles on a PPC604; so we utilize this
   to do some prefetching in between */
#  define NEXT_P0
#  define CFA		cfa
#  define IP		ip
#  define SET_IP(p)	({ip=(p); next_cfa=*ip; NEXT_P0;})
#  define NEXT_INST	(next_cfa)
#  define INC_IP(const_inc)	({next_cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA	
#  define NEXT_P1	({cfa=next_cfa; ip++; next_cfa=*ip;})
#  define NEXT_P2	({goto *cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#  define MORE_VARS	Xt next_cfa;
#endif

#if THREADING_SCHEME==10
#warning direct threading scheme 10: plain (no attempt at scheduling)
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*ip)
#  define INC_IP(const_inc)	({ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1
#  define NEXT_P2	({cfa=*ip++; goto *cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

/* direct threaded */
#else
/* indirect THREADED  */

#ifndef THREADING_SCHEME
#define THREADING_SCHEME 6
#endif

#if THREADING_SCHEME==1
#warning indirect threading scheme 1: autoinc, long latency, cisc
#  define NEXT_P0	({cfa1=cfa; cfa=*ip++;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip-1)
#  define SET_IP(p)	({ip=(p); cfa=*ip++;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1
#  define NEXT_P2	({goto **cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==2
#warning indirect threading scheme 2: autoinc, long latency
#  define NEXT_P0	({cfa1=cfa; cfa=*ip++;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip-1)
#  define SET_IP(p)	({ip=(p); cfa=*ip++;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA	Label ca;
#  define NEXT_P1	({ca=*cfa;})
#  define NEXT_P2	({goto *ca;})
#  define EXEC(XT)	({DEF_CA cfa=(XT); ca=*cfa; goto *ca;})
#endif


#if THREADING_SCHEME==3
#warning indirect threading scheme 3: autoinc, low latency, cisc
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*ip)
#  define INC_IP(const_inc)	({ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1
#  define NEXT_P2	({cfa=*ip++; goto **cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==4
#warning indirect threading scheme 4: autoinc, low latency
#  define NEXT_P0	({cfa1=cfa; cfa=*ip++;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip-1)
#  define SET_IP(p)	({ip=(p); cfa=*ip++;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA	Label ca;
#  define NEXT_P1	({ca=*cfa;})
#  define NEXT_P2	({goto *ca;})
#  define EXEC(XT)	({DEF_CA cfa=(XT); ca=*cfa; goto *ca;})
#endif


#if THREADING_SCHEME==5
#warning indirect threading scheme 5: long latency, cisc
#  define NEXT_P0	({cfa1=cfa; cfa=*ip;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); cfa=*ip;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1	(ip++)
#  define NEXT_P2	({goto **cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

#if THREADING_SCHEME==6
#warning indirect threading scheme 6: long latency
#  define NEXT_P0	({cfa1=cfa; cfa=*ip;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); cfa=*ip;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA	Label ca;
#  define NEXT_P1	({ip++; ca=*cfa;})
#  define NEXT_P2	({goto *ca;})
#  define EXEC(XT)	({DEF_CA cfa=(XT); ca=*cfa; goto *ca;})
#endif

#if THREADING_SCHEME==7
#warning indirect threading scheme 7: low latency
#  define NEXT_P0	({cfa1=cfa; cfa=*ip;})
#  define CFA		cfa1
#  define MORE_VARS     Xt cfa1;
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); cfa=*ip;})
#  define NEXT_INST	(cfa)
#  define INC_IP(const_inc)	({cfa=IP[const_inc]; ip+=(const_inc);})
#  define DEF_CA	Label ca;
#  define NEXT_P1	({ip++; ca=*cfa;})
#  define NEXT_P2	({goto *ca;})
#  define EXEC(XT)	({DEF_CA cfa=(XT); ca=*cfa; goto *ca;})
#endif

#if THREADING_SCHEME==8
#warning indirect threading scheme 8: low latency,cisc
#  define NEXT_P0
#  define CFA		cfa
#  define IP		(ip)
#  define SET_IP(p)	({ip=(p); NEXT_P0;})
#  define NEXT_INST	(*ip)
#  define INC_IP(const_inc)	({ip+=(const_inc);})
#  define DEF_CA
#  define NEXT_P1
#  define NEXT_P2	({cfa=*ip++; goto **cfa;})
#  define EXEC(XT)	({cfa=(XT); goto **cfa;})
#endif

/* indirect threaded */
#endif

#endif /* !defined(DOUBLY_INDIRECT) && !defined(NO_IP) */

#define NEXT ({DEF_CA NEXT_P1; NEXT_P2;})
#define IPTOS NEXT_INST