1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/*
** Copyright (c) 2018-2020 Valve Corporation
** Copyright (c) 2018-2020 LunarG, Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and associated documentation files (the "Software"),
** to deal in the Software without restriction, including without limitation
** the rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons to whom the
** Software is furnished to do so, subject to the following conditions:
**
** The above copyright notice and this permission notice shall be included in
** all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
** LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
** FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
** DEALINGS IN THE SOFTWARE.
*/
#ifndef GFXRECON_DECODE_POINTER_DECODER_H
#define GFXRECON_DECODE_POINTER_DECODER_H
#include "decode/pointer_decoder_base.h"
#include "decode/decode_allocator.h"
#include "decode/value_decoder.h"
#include "format/format.h"
#include "util/defines.h"
#include "util/logging.h"
#include <cassert>
#include <memory>
GFXRECON_BEGIN_NAMESPACE(gfxrecon)
GFXRECON_BEGIN_NAMESPACE(decode)
template <typename T, typename OutputT = T>
class PointerDecoder : public PointerDecoderBase
{
public:
PointerDecoder() : data_(nullptr), capacity_(0), is_memory_external_(false), output_len_(0) {}
T* GetPointer() { return data_; }
const T* GetPointer() const { return data_; }
size_t GetOutputLength() const { return output_len_; }
OutputT* GetOutputPointer() { return output_data_; }
const OutputT* GetOutputPointer() const { return output_data_; }
OutputT* AllocateOutputData(size_t len)
{
output_len_ = len;
// Default initialize output_data_
output_data_ = DecodeAllocator::Allocate<OutputT>(len);
return output_data_;
}
OutputT* AllocateOutputData(size_t len, const OutputT& init)
{
output_len_ = len;
output_data_ = DecodeAllocator::Allocate<OutputT>(len, false);
for (size_t i = 0; i < len; ++i)
{
output_data_[i] = init;
}
return output_data_;
}
template <size_t N, size_t M>
void SetExternalMemory(T (&data)[N][M], size_t n, size_t m)
{
assert((data_ == nullptr) && (N == n) && (M == m));
size_t capacity = n * m;
if ((data != nullptr) && (capacity > 0))
{
data_ = reinterpret_cast<T*>(data);
capacity_ = capacity;
is_memory_external_ = true;
}
else
{
GFXRECON_LOG_WARNING("Pointer decoder's external memory was initialized with a NULL pointer");
}
}
void SetExternalMemory(T* data, size_t capacity)
{
assert(data_ == nullptr);
if ((data != nullptr) && (capacity > 0))
{
data_ = data;
capacity_ = capacity;
is_memory_external_ = true;
}
else
{
GFXRECON_LOG_WARNING("Pointer decoder's external memory was initialized with a NULL pointer");
}
}
// clang-format off
size_t DecodeUInt16(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint16_t>(buffer, buffer_size); }
size_t DecodeInt32(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<int32_t>(buffer, buffer_size); }
size_t DecodeUInt32(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint32_t>(buffer, buffer_size); }
size_t DecodeInt64(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<int64_t>(buffer, buffer_size); }
size_t DecodeUInt64(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint64_t>(buffer, buffer_size); }
size_t DecodeFloat(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<float>(buffer, buffer_size); }
size_t DecodeVkBool32(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<VkBool32>(buffer, buffer_size); }
// Decode pointer to a void pointer, encoded with ParameterEncoder::EncodeVoidPtrPtr.
size_t DecodeVoidPtr(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::AddressEncodeType>(buffer, buffer_size); }
// Decode for array of bytes.
size_t DecodeUInt8(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint8_t>(buffer, buffer_size); }
size_t DecodeVoid(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint8_t>(buffer, buffer_size); }
// Decode for special types that may require conversion.
size_t DecodeEnum(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::EnumEncodeType>(buffer, buffer_size); }
size_t DecodeFlags(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::FlagsEncodeType>(buffer, buffer_size); }
size_t DecodeVkSampleMask(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::SampleMaskEncodeType>(buffer, buffer_size); }
size_t DecodeHandleId(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::HandleEncodeType>(buffer, buffer_size); }
size_t DecodeVkDeviceSize(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::DeviceSizeEncodeType>(buffer, buffer_size); }
size_t DecodeVkDeviceAddress(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::DeviceAddressEncodeType>(buffer, buffer_size); }
size_t DecodeSizeT(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::SizeTEncodeType>(buffer, buffer_size); }
// clang-format on
private:
template <typename SrcT>
size_t DecodeFrom(const uint8_t* buffer, size_t buffer_size)
{
size_t bytes_read = DecodeAttributes(buffer, buffer_size);
// We should not be decoding string arrays or structs.
assert((GetAttributeMask() & (format::PointerAttributes::kIsString | format::PointerAttributes::kIsArray)) !=
(format::PointerAttributes::kIsString | format::PointerAttributes::kIsArray));
assert((GetAttributeMask() & (format::PointerAttributes::kIsWString | format::PointerAttributes::kIsArray)) !=
(format::PointerAttributes::kIsWString | format::PointerAttributes::kIsArray));
assert((GetAttributeMask() & format::PointerAttributes::kIsStruct) != format::PointerAttributes::kIsStruct);
if (!IsNull())
{
if (!is_memory_external_)
{
bytes_read += DecodeInternal<SrcT>((buffer + bytes_read), (buffer_size - bytes_read));
}
else
{
bytes_read += DecodeExternal<SrcT>((buffer + bytes_read), (buffer_size - bytes_read));
}
}
return bytes_read;
}
template <typename SrcT>
size_t DecodeInternal(const uint8_t* buffer, size_t buffer_size)
{
assert(data_ == nullptr);
size_t bytes_read = 0;
size_t len = GetLength();
if (HasData())
{
data_ = DecodeAllocator::Allocate<T>(len, false);
bytes_read = ValueDecoder::DecodeArrayFrom<SrcT>(buffer, buffer_size, data_, len);
}
else
{
// Allocate and default initialize
data_ = DecodeAllocator::Allocate<T>(len);
}
return bytes_read;
}
template <typename SrcT>
size_t DecodeExternal(const uint8_t* buffer, size_t buffer_size)
{
assert(data_ != nullptr);
size_t bytes_read = 0;
if (HasData())
{
size_t len = GetLength();
if (len <= capacity_)
{
ValueDecoder::DecodeArrayFrom<SrcT>(buffer, buffer_size, data_, len);
}
else
{
// The external memory cacpacity is not large enough to contain the full decoded array.
ValueDecoder::DecodeArrayFrom<SrcT>(buffer, buffer_size, data_, capacity_);
GFXRECON_LOG_WARNING("Pointer decoder's external memory capacity (%" PRIuPTR
") is smaller than the decoded array size (%" PRIuPTR "); data will be truncated",
capacity_,
len);
}
// We always need to advance the position within the buffer by the amount of data that was expected to
// be decoded, not the actual amount of data decoded if capacity is too small to hold all of the data.
bytes_read = sizeof(SrcT) * len;
}
return bytes_read;
}
private:
/// Memory to hold decoded data. Points to an internal allocation when #is_memory_external_ is false and
/// to an externally provided allocation when #is_memory_external_ is true.
T* data_;
size_t capacity_; ///< Size of external memory allocation referenced by #data_ when #is_memory_external_ is true.
bool is_memory_external_; ///< Indicates that the memory referenced by #data_ is an external allocation.
/// Optional memory allocated for output pramaters when retrieving data from a function call. Allows both the data
/// read from the file and the data retrieved from an API call to exist simultaneously, allowing the values to be
/// compared.
OutputT* output_data_{ nullptr };
size_t output_len_; ///< Size of #output_data_.
};
template <typename T>
class PointerDecoder<T*> : public PointerDecoderBase
{
public:
PointerDecoder() : data_(nullptr) {}
T** GetPointer() { return data_; }
const T** GetPointer() const { return data_; }
// clang-format off
size_t DecodeInt32(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<int32_t>(buffer, buffer_size); }
size_t DecodeUInt32(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint32_t>(buffer, buffer_size); }
size_t DecodeInt64(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<int64_t>(buffer, buffer_size); }
size_t DecodeUInt64(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint64_t>(buffer, buffer_size); }
size_t DecodeFloat(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<float>(buffer, buffer_size); }
size_t DecodeVkBool32(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<VkBool32>(buffer, buffer_size); }
// Decode pointer to a void pointer, encoded with ParameterEncoder::EncodeVoidPtrPtr.
size_t DecodeVoidPtr(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::AddressEncodeType>(buffer, buffer_size); }
// Decode for array of bytes.
size_t DecodeUInt8(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint8_t>(buffer, buffer_size); }
size_t DecodeVoid(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<uint8_t>(buffer, buffer_size); }
// Decode for special types that may require conversion.
size_t DecodeEnum(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::EnumEncodeType>(buffer, buffer_size); }
size_t DecodeFlags(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::FlagsEncodeType>(buffer, buffer_size); }
size_t DecodeVkSampleMask(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::SampleMaskEncodeType>(buffer, buffer_size); }
size_t DecodeHandleId(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::HandleEncodeType>(buffer, buffer_size); }
size_t DecodeVkDeviceSize(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::DeviceSizeEncodeType>(buffer, buffer_size); }
size_t DecodeVkDeviceAddress(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::DeviceAddressEncodeType>(buffer, buffer_size); }
size_t DecodeSizeT(const uint8_t* buffer, size_t buffer_size) { return DecodeFrom<format::SizeTEncodeType>(buffer, buffer_size); }
// clang-format on
private:
template <typename SrcT>
size_t DecodeFrom(const uint8_t* buffer, size_t buffer_size)
{
size_t bytes_read = DecodeAttributes(buffer, buffer_size);
// We should not be decoding pointers, arrays, or structs.
assert((GetAttributeMask() & format::PointerAttributes::kIsSingle) != format::PointerAttributes::kIsSingle);
assert((GetAttributeMask() & format::PointerAttributes::kIsArray) != format::PointerAttributes::kIsArray);
assert((GetAttributeMask() & format::PointerAttributes::kIsStruct) != format::PointerAttributes::kIsStruct);
// We should only be decoding 2D arrays
assert((GetAttributeMask() & format::PointerAttributes::kIsArray2D) == format::PointerAttributes::kIsArray2D);
if (!IsNull() && HasData())
{
bytes_read += DecodeInternal<SrcT>((buffer + bytes_read), (buffer_size - bytes_read));
}
return bytes_read;
}
template <typename SrcT>
size_t DecodeInternal(const uint8_t* buffer, size_t buffer_size)
{
assert(data_ == nullptr);
size_t bytes_read = 0;
size_t len = GetLength();
data_ = DecodeAllocator::Allocate<T*>(len, false);
for (size_t i = 0; i < len; ++i)
{
uint32_t attrib = 0;
bytes_read += ValueDecoder::DecodeUInt32Value((buffer + bytes_read), (buffer_size - bytes_read), &attrib);
if ((attrib & format::PointerAttributes::kIsNull) != format::PointerAttributes::kIsNull)
{
if ((attrib & format::PointerAttributes::kHasAddress) == format::PointerAttributes::kHasAddress)
{
uint64_t address;
bytes_read +=
ValueDecoder::DecodeAddress((buffer + bytes_read), (buffer_size - bytes_read), &address);
}
// We should not be decoding string arrays or structs.
assert((GetAttributeMask() &
(format::PointerAttributes::kIsString | format::PointerAttributes::kIsArray)) !=
(format::PointerAttributes::kIsString | format::PointerAttributes::kIsArray));
assert((GetAttributeMask() &
(format::PointerAttributes::kIsWString | format::PointerAttributes::kIsArray)) !=
(format::PointerAttributes::kIsWString | format::PointerAttributes::kIsArray));
assert((GetAttributeMask() & format::PointerAttributes::kIsStruct) !=
format::PointerAttributes::kIsStruct);
size_t inner_len = 0;
bytes_read +=
ValueDecoder::DecodeSizeTValue((buffer + bytes_read), (buffer_size - bytes_read), &inner_len);
T* inner_data = DecodeAllocator::Allocate<T>(inner_len);
bytes_read += ValueDecoder::DecodeArrayFrom<SrcT>(
(buffer + bytes_read), (buffer_size - bytes_read), inner_data, inner_len);
data_[i] = inner_data;
}
else
{
data_[i] = nullptr;
}
}
return bytes_read;
}
private:
T** data_; ///< Memory to hold decoded data
};
GFXRECON_END_NAMESPACE(decode)
GFXRECON_END_NAMESPACE(gfxrecon)
#endif // GFXRECON_DECODE_POINTER_DECODER_H
|