File: portability.cpp

package info (click to toggle)
gfxreconstruct 0.9.18%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 24,636 kB
  • sloc: cpp: 328,961; ansic: 25,454; python: 18,156; xml: 255; sh: 128; makefile: 6
file content (293 lines) | stat: -rw-r--r-- 10,880 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
** Copyright (c) 2020 LunarG, Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and associated documentation files (the "Software"),
** to deal in the Software without restriction, including without limitation
** the rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons to whom the
** Software is furnished to do so, subject to the following conditions:
**
** The above copyright notice and this permission notice shall be included in
** all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
** LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
** FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
** DEALINGS IN THE SOFTWARE.
*/

#include "decode/portability.h"

#include <cassert>
#include <limits>
#include <vector>

GFXRECON_BEGIN_NAMESPACE(gfxrecon)
GFXRECON_BEGIN_NAMESPACE(decode)
GFXRECON_BEGIN_NAMESPACE(portability)

// Minimum heap size to use when checking for memory type compatibility without comparing capture and replay heap
// sizes, to prevent invalid mappings from iGPU DEVICE_LOCAL|HOST_VISIBLE types to the special 256MB
// DEVICE_LOCAL|HOST_VISIBLE heaps provided by some dGPUs.
const VkDeviceSize kMinHeapSize  = 0x40000000; // 1 GB
const uint32_t     kInvalidIndex = std::numeric_limits<uint32_t>::max();

static uint32_t FindMemoryTypeMatch(VkMemoryPropertyFlags                   capture_flags,
                                    uint32_t                                capture_occurrence,
                                    VkDeviceSize                            capture_heap_size,
                                    const VkPhysicalDeviceMemoryProperties& replay_props,
                                    bool                                    exact_flags_match,
                                    bool                                    check_heap_sizes)
{
    uint32_t current_match      = kInvalidIndex;
    uint32_t current_occurrence = 0;

    for (uint32_t i = 0; i < replay_props.memoryTypeCount; ++i)
    {
        bool compatible_flags = false;
        bool compatible_heaps = false;

        if (exact_flags_match)
        {
            if (capture_flags == replay_props.memoryTypes[i].propertyFlags)
            {
                compatible_flags = true;
            }
        }
        else
        {
            if ((capture_flags & replay_props.memoryTypes[i].propertyFlags) == capture_flags)
            {
                compatible_flags = true;
            }
        }

        uint32_t replay_heap_index = replay_props.memoryTypes[i].heapIndex;

        if (check_heap_sizes)
        {
            if (replay_props.memoryHeaps[replay_heap_index].size >= capture_heap_size)
            {
                compatible_heaps = true;
            }
        }
        else
        {
            // When not comparing capture and replay heap sizes, enforce a minimum heap size to prevent invalid mappings
            // from iGPU DEVICE_LOCAL|HOST_VISIBLE types to dGPU 256MB DEVICE_LOCAL|HOST_VISIBLE heaps, unless the
            // capture heap size was also smaller than the min heap size (e.g. if the capture heap is the 256MB heap,
            // allow it to map to a 256MB replay heap).
            if ((replay_props.memoryHeaps[replay_heap_index].size >= kMinHeapSize) ||
                (capture_heap_size <= kMinHeapSize))
            {
                compatible_heaps = true;
            }
        }

        if (compatible_flags && compatible_heaps)
        {
            ++current_occurrence;

            if (capture_occurrence == current_occurrence)
            {
                return i;
            }
            else
            {
                // Continue looking for an index with matching property flags and occurrence count.  Checking for a
                // matching occurrence count will provide one-to-one mappings when the capture and replay memory
                // properties are the same.
                current_match = i;
            }
        }
    }

    return current_match;
}

// Check for multiple occurences of memory types with the same property flags, returning the occurence number for the
// specified index.
static uint32_t GetMemoryTypeOccurence(uint32_t index, const VkPhysicalDeviceMemoryProperties& props)
{
    assert(index < props.memoryTypeCount);

    uint32_t occurrence = 1;

    for (uint32_t i = 0; i < index; ++i)
    {
        if (props.memoryTypes[index].propertyFlags == props.memoryTypes[i].propertyFlags)
        {
            ++occurrence;
        }
    }

    return occurrence;
}

bool CheckMemoryTypeCompatibility(const VkPhysicalDeviceMemoryProperties& capture_props,
                                  const VkPhysicalDeviceMemoryProperties& replay_props,
                                  bool                                    ignore_heap_sizes)
{
    if ((capture_props.memoryTypeCount == 0) || (capture_props.memoryTypeCount > replay_props.memoryTypeCount))
    {
        return false;
    }

    for (uint32_t i = 0; i < capture_props.memoryTypeCount; ++i)
    {
        VkMemoryPropertyFlags capture_flags = capture_props.memoryTypes[i].propertyFlags;

        if ((capture_flags & replay_props.memoryTypes[i].propertyFlags) != capture_flags)
        {
            return false;
        }

        if (!ignore_heap_sizes)
        {
            uint32_t capture_heap_index = capture_props.memoryTypes[i].heapIndex;
            uint32_t replay_heap_index  = replay_props.memoryTypes[i].heapIndex;

            if (capture_props.memoryHeaps[capture_heap_index].size > replay_props.memoryHeaps[replay_heap_index].size)
            {
                return false;
            }
        }
    }

    return true;
}

uint32_t FindCompatibleMemoryType(uint32_t                                capture_index,
                                  const VkPhysicalDeviceMemoryProperties& capture_props,
                                  const VkPhysicalDeviceMemoryProperties& replay_props)
{
    VkMemoryPropertyFlags capture_flags      = capture_props.memoryTypes[capture_index].propertyFlags;
    uint32_t              capture_heap_index = capture_props.memoryTypes[capture_index].heapIndex;
    VkDeviceSize          capture_heap_size  = capture_props.memoryHeaps[capture_heap_index].size;

    uint32_t index              = kInvalidIndex;
    uint32_t capture_occurrence = GetMemoryTypeOccurence(capture_index, capture_props);
    bool     do_checks          = true;

    while (do_checks)
    {
        // Check for exact property match with replay heap size greater than or equal to capture heap size.
        index = FindMemoryTypeMatch(capture_flags, capture_occurrence, capture_heap_size, replay_props, true, true);
        if (index != kInvalidIndex)
        {
            return index;
        }

        // Check for property superset with replay heap size greater than or equal to capture heap size.
        index = FindMemoryTypeMatch(capture_flags, capture_occurrence, capture_heap_size, replay_props, false, true);
        if (index != kInvalidIndex)
        {
            return index;
        }

        // Check for exact property match, allowing replay heap sizes to be smaller than capture heap sizes.
        index = FindMemoryTypeMatch(capture_flags, capture_occurrence, capture_heap_size, replay_props, true, false);
        if (index != kInvalidIndex)
        {
            return index;
        }

        // Check for property superset, allowing replay heap sizes to be smaller than capture heap sizes.
        index = FindMemoryTypeMatch(capture_flags, capture_occurrence, capture_heap_size, replay_props, false, false);
        if (index != kInvalidIndex)
        {
            return index;
        }

        // If present, remove AMD device property flag bits and try again with just the core property flags.
        VkMemoryPropertyFlags new_flags =
            capture_flags & ~(VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD);

        if ((new_flags == 0) || (new_flags == capture_flags))
        {
            do_checks = false;
        }
        else
        {
            capture_flags = new_flags;
        }
    }

    // If a match has not been found, try adjusting the memory property flags and try again.
    const VkMemoryPropertyFlags kDeviceAndHost =
        VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

    VkMemoryPropertyFlags new_flags = capture_flags;

    if (new_flags == 0)
    {
        // Attempt to map memory types that report no flags to host memory.
        new_flags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    }
    else if ((new_flags & kDeviceAndHost) == kDeviceAndHost)
    {
        // The replay device may not have a memory type that is both device local and host visible, so we default to
        // just the host visible type.
        new_flags &= ~VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
    }

    // If the flags are unchanged, there is nothing else to do.
    if (new_flags != capture_flags)
    {
        // Check for exact property match with compatible heap size.
        index = FindMemoryTypeMatch(new_flags, capture_occurrence, capture_heap_size, replay_props, true, true);
        if (index != kInvalidIndex)
        {
            return index;
        }

        // Check for property superset with compatible heap size.
        index = FindMemoryTypeMatch(new_flags, capture_occurrence, capture_heap_size, replay_props, false, true);
        if (index != kInvalidIndex)
        {
            return index;
        }

        // Check for exact property match.
        index = FindMemoryTypeMatch(new_flags, capture_occurrence, capture_heap_size, replay_props, true, false);
        if (index != kInvalidIndex)
        {
            return index;
        }

        // Check for property superset.
        index = FindMemoryTypeMatch(new_flags, capture_occurrence, capture_heap_size, replay_props, false, false);
        if (index != kInvalidIndex)
        {
            return index;
        }
    }

    return index;
}

bool CheckMemoryTypeIndexValidity(std::vector<uint32_t> indexes)
{
    if (indexes.empty())
    {
        return false;
    }

    for (auto index : indexes)
    {
        if (index == kInvalidIndex)
        {
            return false;
        }
    }

    return true;
}

GFXRECON_END_NAMESPACE(portability)
GFXRECON_END_NAMESPACE(decode)
GFXRECON_END_NAMESPACE(gfxrecon)