1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
/*
** Copyright (c) 2018-2020 Valve Corporation
** Copyright (c) 2018-2020 LunarG, Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and associated documentation files (the "Software"),
** to deal in the Software without restriction, including without limitation
** the rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons to whom the
** Software is furnished to do so, subject to the following conditions:
**
** The above copyright notice and this permission notice shall be included in
** all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
** LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
** FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
** DEALINGS IN THE SOFTWARE.
*/
#ifndef GFXRECON_DECODE_STRUCT_POINTER_DECODER_H
#define GFXRECON_DECODE_STRUCT_POINTER_DECODER_H
#include "decode/custom_vulkan_struct_decoders_forward.h"
#include "decode/pointer_decoder_base.h"
#include "decode/decode_allocator.h"
#include "decode/value_decoder.h"
#include "format/format.h"
#include "generated/generated_vulkan_struct_decoders_forward.h"
#include "util/defines.h"
#if defined(WIN32)
#include "decode/custom_dx12_struct_decoders_forward.h"
#include "generated/generated_dx12_struct_decoders_forward.h"
#endif
#include <cassert>
#include <memory>
GFXRECON_BEGIN_NAMESPACE(gfxrecon)
GFXRECON_BEGIN_NAMESPACE(decode)
template <typename T>
class StructPointerDecoder : public PointerDecoderBase
{
public:
StructPointerDecoder() :
decoded_structs_(nullptr), struct_memory_(nullptr), capacity_(0), is_memory_external_(false)
{}
T* GetMetaStructPointer() { return decoded_structs_; }
const T* GetMetaStructPointer() const { return decoded_structs_; }
typename T::struct_type* GetPointer() { return struct_memory_; }
const typename T::struct_type* GetPointer() const { return struct_memory_; }
size_t GetOutputLength() const { return output_len_; }
typename T::struct_type* GetOutputPointer() { return output_data_; }
const typename T::struct_type* GetOutputPointer() const { return output_data_; }
typename T::struct_type* AllocateOutputData(size_t len)
{
output_len_ = len;
output_data_ = DecodeAllocator::Allocate<typename T::struct_type>(len);
return output_data_;
}
typename T::struct_type* AllocateOutputData(size_t len, const typename T::struct_type& init)
{
output_len_ = len;
output_data_ = DecodeAllocator::Allocate<typename T::struct_type>(len);
for (size_t i = 0; i < len; ++i)
{
output_data_[i] = init;
}
return output_data_;
}
void SetExternalMemory(typename T::struct_type* data, size_t capacity)
{
if ((data != nullptr) && (capacity > 0))
{
struct_memory_ = data;
capacity_ = capacity;
is_memory_external_ = true;
}
else
{
GFXRECON_LOG_WARNING("Struct pointer decoder's external memory was initialized with a NULL pointer");
}
}
size_t Decode(const uint8_t* buffer, size_t buffer_size)
{
size_t bytes_read = DecodeAttributes(buffer, buffer_size);
// We should only be decoding structs.
assert((GetAttributeMask() & format::PointerAttributes::kIsStruct) == format::PointerAttributes::kIsStruct);
if (!IsNull())
{
size_t len = GetLength();
if (!is_memory_external_)
{
assert(struct_memory_ == nullptr);
struct_memory_ = DecodeAllocator::Allocate<typename T::struct_type>(len);
capacity_ = len;
}
else
{
assert(struct_memory_ != nullptr);
assert(len <= capacity_);
if ((struct_memory_ == nullptr) || (len > capacity_))
{
GFXRECON_LOG_WARNING("Struct pointer decoder's external memory capacity (%" PRIuPTR
") is smaller than the decoded array size (%" PRIuPTR
"); an internal memory allocation will be used instead",
capacity_,
len);
is_memory_external_ = false;
struct_memory_ = DecodeAllocator::Allocate<typename T::struct_type>(len);
capacity_ = len;
}
}
decoded_structs_ = DecodeAllocator::Allocate<T>(len);
if (HasData())
{
for (size_t i = 0; i < len; ++i)
{
decoded_structs_[i].decoded_value = &struct_memory_[i];
// Note: We only expect this class to be used with structs that have a decode_struct function.
// If an error is encoutered here due to a new struct type, the struct decoders need to be
// updated to support the new type.
bytes_read += DecodeStruct((buffer + bytes_read), (buffer_size - bytes_read), &decoded_structs_[i]);
}
}
}
return bytes_read;
}
private:
/// Memory to hold decoded data. Points to an internal allocation when #is_memory_external_ is false and
/// to an externally provided allocation when #is_memory_external_ is true.
T* decoded_structs_;
typename T::struct_type* struct_memory_; ///< Decoded Vulkan structures.
size_t capacity_; ///< Size of external memory allocation referenced by #data_ when #is_memory_external_ is true.
bool is_memory_external_; ///< Indicates that the memory referenced by #data_ is an external allocation.
/// Optional memory allocated for output pramaters when retrieving data from a function call. Allows both the data
/// read from the file and the data retrieved from an API call to exist simultaneously, allowing the values to be
/// compared.
typename T::struct_type* output_data_{ nullptr };
size_t output_len_; ///< Size of #output_data_.
};
template <typename T>
class StructPointerDecoder<T*> : public PointerDecoderBase
{
public:
StructPointerDecoder() : decoded_structs_(nullptr), struct_memory_(nullptr) {}
T** GetMetaStructPointer() { return decoded_structs_; }
const T* const* GetMetaStructPointer() const { return decoded_structs_; }
typename T::struct_type** GetPointer() { return struct_memory_; }
const typename T::struct_type** GetPointer() const { return struct_memory_; }
size_t Decode(const uint8_t* buffer, size_t buffer_size)
{
size_t bytes_read = DecodeAttributes(buffer, buffer_size);
// We should only be decoding 2D struct arrays.
assert((GetAttributeMask() & (format::PointerAttributes::kIsStruct | format::PointerAttributes::kIsArray2D)) ==
(format::PointerAttributes::kIsStruct | format::PointerAttributes::kIsArray2D));
if (!IsNull() && HasData())
{
assert(struct_memory_ == nullptr);
size_t len = GetLength();
struct_memory_ = DecodeAllocator::Allocate<typename T::struct_type*>(len, false);
decoded_structs_ = DecodeAllocator::Allocate<T*>(len, false);
for (size_t i = 0; i < len; ++i)
{
uint32_t attrib = 0;
bytes_read +=
ValueDecoder::DecodeUInt32Value((buffer + bytes_read), (buffer_size - bytes_read), &attrib);
if ((attrib & format::PointerAttributes::kIsNull) != format::PointerAttributes::kIsNull)
{
if ((attrib & format::PointerAttributes::kHasAddress) == format::PointerAttributes::kHasAddress)
{
uint64_t address;
bytes_read +=
ValueDecoder::DecodeAddress((buffer + bytes_read), (buffer_size - bytes_read), &address);
}
assert((attrib & format::PointerAttributes::kIsStruct) == format::PointerAttributes::kIsStruct);
size_t inner_len = 0;
bytes_read +=
ValueDecoder::DecodeSizeTValue((buffer + bytes_read), (buffer_size - bytes_read), &inner_len);
typename T::struct_type* inner_struct_memory =
DecodeAllocator::Allocate<typename T::struct_type>(inner_len);
T* inner_decoded_structs = DecodeAllocator::Allocate<T>(inner_len);
for (size_t j = 0; j < inner_len; ++j)
{
inner_decoded_structs[j].decoded_value = &inner_struct_memory[j];
// Note: We only expect this class to be used with structs that have a decode_struct function.
// If an error is encoutered here due to a new struct type, the struct decoders need to be
// updated to support the new type.
bytes_read +=
DecodeStruct((buffer + bytes_read), (buffer_size - bytes_read), &inner_decoded_structs[j]);
}
struct_memory_[i] = inner_struct_memory;
decoded_structs_[i] = inner_decoded_structs;
}
else
{
struct_memory_[i] = nullptr;
decoded_structs_[i] = nullptr;
}
}
}
return bytes_read;
}
private:
T** decoded_structs_; ///< Memory to hold decoded data.
typename T::struct_type** struct_memory_; ///< Decoded Vulkan structures.
};
GFXRECON_END_NAMESPACE(decode)
GFXRECON_END_NAMESPACE(gfxrecon)
#endif // GFXRECON_DECODE_STRUCT_POINTER_DECODER_H
|