1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
/*
** Copyright (c) 2020 Advanced Micro Devices, Inc. All rights reserved.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and associated documentation files (the "Software"),
** to deal in the Software without restriction, including without limitation
** the rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons to whom the
** Software is furnished to do so, subject to the following conditions:
**
** The above copyright notice and this permission notice shall be included in
** all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
** LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
** FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
** DEALINGS IN THE SOFTWARE.
*/
#include "decode/vulkan_resource_tracking_consumer.h"
#include <algorithm>
#include <cassert>
#include <unordered_set>
GFXRECON_BEGIN_NAMESPACE(gfxrecon)
GFXRECON_BEGIN_NAMESPACE(decode)
const std::vector<std::string> kLoaderLibNames = {
#if defined(WIN32)
"vulkan-1.dll"
#else
"libvulkan.so", "libvulkan.so.1"
#endif
};
VulkanResourceTrackingConsumer::VulkanResourceTrackingConsumer(
const VulkanReplayOptions& options, VulkanTrackedObjectInfoTable* tracked_object_info_table) :
options_(options),
loader_handle_(nullptr), get_instance_proc_addr_(nullptr), create_instance_function_(nullptr),
tracked_object_info_table_(tracked_object_info_table)
{
assert(tracked_object_info_table != nullptr);
}
VulkanResourceTrackingConsumer::~VulkanResourceTrackingConsumer()
{
if (loader_handle_ != nullptr)
{
util::platform::CloseLibrary(loader_handle_);
}
}
void VulkanResourceTrackingConsumer::InitializeLoader()
{
for (auto name : kLoaderLibNames)
{
loader_handle_ = util::platform::OpenLibrary(name.c_str());
if (loader_handle_ != nullptr)
{
get_instance_proc_addr_ = reinterpret_cast<PFN_vkGetInstanceProcAddr>(
util::platform::GetProcAddress(loader_handle_, "vkGetInstanceProcAddr"));
break;
}
}
if (get_instance_proc_addr_ != nullptr)
{
create_instance_function_ =
reinterpret_cast<PFN_vkCreateInstance>(get_instance_proc_addr_(nullptr, "vkCreateInstance"));
}
if (create_instance_function_ == nullptr)
{
GFXRECON_LOG_FATAL("Failed to load Vulkan runtime library; please ensure that the path to the Vulkan "
"loader (eg. %s) has been added to the appropriate system path",
kLoaderLibNames[0].c_str());
}
}
void VulkanResourceTrackingConsumer::AddInstanceTable(VkInstance instance)
{
encode::DispatchKey dispatch_key = encode::GetDispatchKey(instance);
get_device_proc_addrs_[dispatch_key] =
reinterpret_cast<PFN_vkGetDeviceProcAddr>(get_instance_proc_addr_(instance, "vkGetDeviceProcAddr"));
create_device_procs_[dispatch_key] =
reinterpret_cast<PFN_vkCreateDevice>(get_instance_proc_addr_(instance, "vkCreateDevice"));
encode::InstanceTable& table = instance_tables_[dispatch_key];
encode::LoadInstanceTable(get_instance_proc_addr_, instance, &table);
}
void VulkanResourceTrackingConsumer::AddDeviceTable(VkDevice device, PFN_vkGetDeviceProcAddr gpa)
{
encode::DeviceTable& table = device_tables_[encode::GetDispatchKey(device)];
encode::LoadDeviceTable(gpa, device, &table);
}
PFN_vkGetDeviceProcAddr VulkanResourceTrackingConsumer::GetDeviceAddrProc(VkPhysicalDevice physical_device)
{
return get_device_proc_addrs_[encode::GetDispatchKey(physical_device)];
}
PFN_vkCreateDevice VulkanResourceTrackingConsumer::GetCreateDeviceProc(VkPhysicalDevice physical_device)
{
return create_device_procs_[encode::GetDispatchKey(physical_device)];
}
const encode::InstanceTable* VulkanResourceTrackingConsumer::GetInstanceTable(const void* handle) const
{
auto table = instance_tables_.find(encode::GetDispatchKey(handle));
assert(table != instance_tables_.end());
return (table != instance_tables_.end()) ? &table->second : nullptr;
}
const encode::DeviceTable* VulkanResourceTrackingConsumer::GetDeviceTable(const void* handle) const
{
auto table = device_tables_.find(encode::GetDispatchKey(handle));
assert(table != device_tables_.end());
return (table != device_tables_.end()) ? &table->second : nullptr;
}
void VulkanResourceTrackingConsumer::Process_vkCreateInstance(
const ApiCallInfo& call_info,
VkResult returnValue,
StructPointerDecoder<Decoded_VkInstanceCreateInfo>* pCreateInfo,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* pAllocator,
HandlePointerDecoder<VkInstance>* pInstance)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
assert((pCreateInfo != nullptr) && (pInstance != nullptr));
if (!pInstance->IsNull())
{
pInstance->SetHandleLength(1);
}
auto replay_create_info = pCreateInfo->GetPointer();
auto replay_instance = pInstance->GetHandlePointer();
assert((replay_create_info != nullptr) && (replay_instance != nullptr));
if (loader_handle_ == nullptr)
{
InitializeLoader();
}
// TODO(gfxrec-28): Replace WSI extension in extension list??
// TODO(gfxrec-28): Disable layers??
VkResult result = create_instance_function_(replay_create_info, nullptr, replay_instance);
if ((replay_instance != nullptr) && (result == VK_SUCCESS))
{
TrackedInstanceInfo instance_info;
instance_info.SetCaptureId(*(pInstance->GetPointer()));
instance_info.SetHandleId(*replay_instance);
GetTrackedObjectInfoTable()->AddTrackedInstanceInfo(std::move(instance_info));
AddInstanceTable(*replay_instance);
}
}
void VulkanResourceTrackingConsumer::Process_vkCreateDevice(
const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId physicalDevice,
StructPointerDecoder<Decoded_VkDeviceCreateInfo>* pCreateInfo,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* pAllocator,
HandlePointerDecoder<VkDevice>* pDevice)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
assert((pCreateInfo != nullptr) && (pDevice != nullptr));
if (!pDevice->IsNull())
{
pDevice->SetHandleLength(1);
}
auto physical_device_info = GetTrackedObjectInfoTable()->GetTrackedPhysicalDeviceInfo(physicalDevice);
assert(physical_device_info != nullptr);
VkResult result = VK_ERROR_INITIALIZATION_FAILED;
VkPhysicalDevice physical_device = physical_device_info->GetHandleId();
PFN_vkGetDeviceProcAddr get_device_proc_addr = GetDeviceAddrProc(physical_device);
PFN_vkCreateDevice create_device_proc = GetCreateDeviceProc(physical_device);
if ((get_device_proc_addr != nullptr) && (create_device_proc != nullptr))
{
auto replay_create_info = pCreateInfo->GetPointer();
auto replay_device = pDevice->GetHandlePointer();
assert((replay_create_info != nullptr) && (replay_device != nullptr));
result = create_device_proc(physical_device, replay_create_info, nullptr, replay_device);
if ((replay_device != nullptr) && (result == VK_SUCCESS))
{
TrackedDeviceInfo device_info;
device_info.SetParentPhysicalDevice(physical_device);
device_info.SetCaptureId(*(pDevice->GetPointer()));
device_info.SetHandleId(*(replay_device));
// Get the memory proeprties for the current physical device.
if (physical_device_info->GetReplayDevicePhysicalMemoryProperties()->memoryHeapCount == 0)
{
// Memory properties weren't queried before device creation, so retrieve them now.
auto table = GetInstanceTable(physical_device);
assert(table != nullptr);
VkPhysicalDeviceMemoryProperties* physical_device_memory =
physical_device_info->GetReplayDevicePhysicalMemoryProperties();
table->GetPhysicalDeviceMemoryProperties(physical_device, physical_device_memory);
}
device_info.SetCaptureDevicePhysicalMemoryProperties(
physical_device_info->GetCaptureDevicePhysicalMemoryProperties());
device_info.SetReplayDevicePhysicalMemoryProperties(
physical_device_info->GetReplayDevicePhysicalMemoryProperties());
GetTrackedObjectInfoTable()->AddTrackedDeviceInfo(std::move(device_info));
AddDeviceTable(*replay_device, get_device_proc_addr);
}
else
{
GFXRECON_LOG_FATAL("Failed to create device during resource tracking. Replay cannot continue.");
}
}
}
void VulkanResourceTrackingConsumer::Process_vkEnumeratePhysicalDevices(
const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId instance,
PointerDecoder<uint32_t>* pPhysicalDeviceCount,
HandlePointerDecoder<VkPhysicalDevice>* pPhysicalDevices)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
auto instance_info = GetTrackedObjectInfoTable()->GetTrackedInstanceInfo(instance);
pPhysicalDeviceCount->AllocateOutputData(
1, pPhysicalDeviceCount->IsNull() ? static_cast<uint32_t>(0) : (*pPhysicalDeviceCount->GetPointer()));
if (!pPhysicalDevices->IsNull())
{
pPhysicalDevices->SetHandleLength(*pPhysicalDeviceCount->GetOutputPointer());
}
std::vector<TrackedPhysicalDeviceInfo> handle_info(*(pPhysicalDeviceCount->GetOutputPointer()));
assert((instance_info != nullptr) && (pPhysicalDeviceCount != nullptr) &&
(pPhysicalDeviceCount->GetPointer() != nullptr) && (pPhysicalDevices != nullptr));
VkInstance instance_id = instance_info->GetHandleId();
uint32_t replay_device_count = (*pPhysicalDeviceCount->GetPointer());
VkPhysicalDevice* replay_devices = pPhysicalDevices->GetHandlePointer();
VkResult result = GetInstanceTable(instance_info->GetHandleId())
->EnumeratePhysicalDevices(instance_id, &replay_device_count, replay_devices);
// TODO (gfxrec-28): check for memory type properties compatibility between capture and replay devices
if ((result >= 0) && (replay_devices != nullptr))
{
if ((pPhysicalDevices->GetPointer() != nullptr) && (pPhysicalDevices->GetHandlePointer() != nullptr))
{
size_t capture_physical_device_length = pPhysicalDevices->GetLength();
size_t playback_physical_device_length = *pPhysicalDeviceCount->GetOutputPointer();
size_t len = std::min(capture_physical_device_length, playback_physical_device_length);
assert(len <= handle_info.size());
for (size_t i = 0; i < len; ++i)
{
auto info_iterator = std::next(handle_info.begin(), i);
info_iterator->SetHandleId(pPhysicalDevices->GetHandlePointer()[i]);
info_iterator->SetCaptureId(pPhysicalDevices->GetPointer()[i]);
GetTrackedObjectInfoTable()->AddTrackedPhysicalDeviceInfo(std::move(*info_iterator));
}
}
}
}
void VulkanResourceTrackingConsumer::Process_vkCreateBuffer(
const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
StructPointerDecoder<Decoded_VkBufferCreateInfo>* create_info,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* allocator,
HandlePointerDecoder<VkBuffer>* buffer)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
assert((create_info != nullptr) && (buffer != nullptr));
if (!buffer->IsNull())
{
buffer->SetHandleLength(1);
}
auto buffer_create_info = create_info->GetPointer();
auto replay_buffer = buffer->GetHandlePointer();
assert((buffer_create_info != nullptr) && (replay_buffer != nullptr));
auto in_device = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
VkResult result = GetDeviceTable(in_device->GetHandleId())
->CreateBuffer(in_device->GetHandleId(), buffer_create_info, nullptr, replay_buffer);
if ((result == VK_SUCCESS) && (buffer_create_info != nullptr) && ((*replay_buffer) != VK_NULL_HANDLE))
{
TrackedResourceInfo buffer_info;
if ((buffer_create_info->sharingMode == VK_SHARING_MODE_CONCURRENT) &&
(buffer_create_info->queueFamilyIndexCount > 0) && (buffer_create_info->pQueueFamilyIndices != nullptr))
{
buffer_info.SetQueueFamilyIndex(buffer_create_info->pQueueFamilyIndices[0]);
}
else
{
buffer_info.SetQueueFamilyIndex(0);
}
buffer_info.SetBufferCreateInfo(*(buffer_create_info));
buffer_info.SetBufferReplayHandleId(*replay_buffer);
buffer_info.SetCaptureId(*(buffer->GetPointer()));
GetTrackedObjectInfoTable()->AddTrackedResourceInfo(std::move(buffer_info));
}
}
void VulkanResourceTrackingConsumer::Process_vkCreateImage(
const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
StructPointerDecoder<Decoded_VkImageCreateInfo>* create_info,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* allocator,
HandlePointerDecoder<VkImage>* image)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
assert((create_info != nullptr) && (image != nullptr));
if (!image->IsNull())
{
image->SetHandleLength(1);
}
auto in_device = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
auto image_create_info = create_info->GetPointer();
auto replay_image = image->GetHandlePointer();
assert((image_create_info != nullptr) && (replay_image != nullptr));
VkResult result = GetDeviceTable(in_device->GetHandleId())
->CreateImage(in_device->GetHandleId(), image_create_info, nullptr, replay_image);
if ((result == VK_SUCCESS) && (image_create_info != nullptr) && ((*replay_image) != VK_NULL_HANDLE))
{
TrackedResourceInfo image_info;
if ((image_create_info->sharingMode == VK_SHARING_MODE_CONCURRENT) &&
(image_create_info->queueFamilyIndexCount > 0) && (image_create_info->pQueueFamilyIndices != nullptr))
{
image_info.SetQueueFamilyIndex(image_create_info->pQueueFamilyIndices[0]);
}
else
{
image_info.SetQueueFamilyIndex(0);
}
image_info.SetImageCreateInfo(*(image_create_info));
image_info.SetImageReplayHandleId(*replay_image);
image_info.SetCaptureId(*(image->GetPointer()));
image_info.SetImageFlag(true);
GetTrackedObjectInfoTable()->AddTrackedResourceInfo(std::move(image_info));
}
}
void VulkanResourceTrackingConsumer::Process_vkAllocateMemory(
const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
StructPointerDecoder<Decoded_VkMemoryAllocateInfo>* allocate_info,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* allocator,
HandlePointerDecoder<VkDeviceMemory>* memory)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
auto device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
TrackedDeviceMemoryInfo memory_info;
assert((allocate_info != nullptr) && (memory != nullptr));
if (!memory->IsNull())
{
memory->SetHandleLength(1);
}
if (!options_.skip_failed_allocations)
{
const VkMemoryAllocateInfo* replay_allocate_info = allocate_info->GetPointer();
auto replay_memory = memory->GetHandlePointer();
assert((replay_allocate_info != nullptr) && (replay_memory != nullptr));
if ((replay_allocate_info != nullptr) && ((*replay_memory) != VK_NULL_HANDLE))
{
memory_info.SetTraceMemoryAllocationSize(replay_allocate_info->allocationSize);
memory_info.AllocateReplayMemoryAllocationSize(replay_allocate_info->allocationSize);
auto replay_memory_properties = device_info->GetReplayDevicePhysicalMemoryProperties();
assert(replay_allocate_info->memoryTypeIndex < replay_memory_properties->memoryTypeCount);
memory_info.SetMemoryPropertyFlags(
replay_memory_properties->memoryTypes[replay_allocate_info->memoryTypeIndex].propertyFlags);
}
}
else
{
GFXRECON_LOG_INFO("Skipping vkAllocateMemory call as per user option set.")
}
memory_info.SetCaptureId(*(memory->GetPointer()));
GetTrackedObjectInfoTable()->AddTrackedDeviceMemoryInfo(std::move(memory_info));
}
void VulkanResourceTrackingConsumer::Process_vkBindBufferMemory(const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
format::HandleId buffer,
format::HandleId memory,
VkDeviceSize memory_offset)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
auto buffer_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(buffer);
auto memory_info = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoryInfo(memory);
assert((buffer_info != nullptr) && (memory_info != nullptr));
buffer_info->SetBoundMemoryId(memory);
buffer_info->SetTraceBindOffset(memory_offset);
// no call to getbuffermemoryrequirement made prior to this,
// make the getbuffermemoryrequirement call to get the replay size.
if (buffer_info->GetReplayResourceSize() == 0)
{
Process_vkGetBufferMemoryRequirements(call_info, device, buffer, nullptr);
}
memory_info->InsertBoundResourcesList(buffer_info);
}
void VulkanResourceTrackingConsumer::Process_vkBindImageMemory(const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
format::HandleId image,
format::HandleId memory,
VkDeviceSize memory_offset)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
auto image_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(image);
auto memory_info = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoryInfo(memory);
assert((image_info != nullptr) && (memory_info != nullptr));
image_info->SetBoundMemoryId(memory);
image_info->SetTraceBindOffset(memory_offset);
// no call to getimagememoryrequirement made prior to this,
// make the getimagememoryrequirement call to get the replay size.
if (image_info->GetReplayResourceSize() == 0)
{
Process_vkGetImageMemoryRequirements(call_info, device, image, nullptr);
}
memory_info->InsertBoundResourcesList(image_info);
}
void VulkanResourceTrackingConsumer::Process_vkBindBufferMemory2(
const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
uint32_t bindInfoCount,
StructPointerDecoder<Decoded_VkBindBufferMemoryInfo>* pBindInfos)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
auto tracked_device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
assert((pBindInfos != nullptr) && (tracked_device_info != nullptr));
const VkBindBufferMemoryInfo* replay_bind_infos = pBindInfos->GetPointer();
const Decoded_VkBindBufferMemoryInfo* replay_bind_meta_infos = pBindInfos->GetMetaStructPointer();
assert((replay_bind_infos != nullptr) && (replay_bind_meta_infos != nullptr));
for (uint32_t i = 0; i < bindInfoCount; ++i)
{
const Decoded_VkBindBufferMemoryInfo* bind_meta_info = &replay_bind_meta_infos[i];
auto buffer_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(bind_meta_info->buffer);
auto memory_info = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoryInfo(bind_meta_info->memory);
assert((buffer_info != nullptr) && (memory_info != nullptr));
buffer_info->SetBoundMemoryId(bind_meta_info->memory);
buffer_info->SetTraceBindOffset(replay_bind_infos[i].memoryOffset);
// no call to getbuffermemoryrequirement made prior to this,
// make the getbuffermemoryrequirement call to get the replay size.
if (buffer_info->GetReplayResourceSize() == 0)
{
Process_vkGetBufferMemoryRequirements(call_info, device, bind_meta_info->buffer, nullptr);
}
memory_info->InsertBoundResourcesList(buffer_info);
}
}
void VulkanResourceTrackingConsumer::Process_vkBindImageMemory2(
const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
uint32_t bindInfoCount,
StructPointerDecoder<Decoded_VkBindImageMemoryInfo>* pBindInfos)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
auto tracked_device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
assert((pBindInfos != nullptr) && (tracked_device_info != nullptr));
const VkBindImageMemoryInfo* replay_bind_infos = pBindInfos->GetPointer();
const Decoded_VkBindImageMemoryInfo* replay_bind_meta_infos = pBindInfos->GetMetaStructPointer();
assert((replay_bind_infos != nullptr) && (replay_bind_meta_infos != nullptr));
for (uint32_t i = 0; i < bindInfoCount; ++i)
{
const Decoded_VkBindImageMemoryInfo* bind_meta_info = &replay_bind_meta_infos[i];
auto image_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(bind_meta_info->image);
auto memory_info = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoryInfo(bind_meta_info->memory);
assert((image_info != nullptr) && (memory_info != nullptr));
image_info->SetBoundMemoryId(bind_meta_info->memory);
image_info->SetTraceBindOffset(replay_bind_infos[i].memoryOffset);
// no call to getimagememoryrequirement made prior to this,
// make the getimagememoryrequirement call to get the replay size.
if (image_info->GetReplayResourceSize() == 0)
{
Process_vkGetImageMemoryRequirements(call_info, device, bind_meta_info->image, nullptr);
}
memory_info->InsertBoundResourcesList(image_info);
}
}
void VulkanResourceTrackingConsumer::Process_vkMapMemory(const ApiCallInfo& call_info,
VkResult returnValue,
format::HandleId device,
format::HandleId memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
PointerDecoder<uint64_t, void*>* data_pointer)
{
GFXRECON_UNREFERENCED_PARAMETER(returnValue);
auto memory_info = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoryInfo(memory);
assert((memory_info != nullptr));
memory_info->InsertMappedMemoryOffsetsList(offset);
memory_info->InsertMappedMemorySizesList(size);
}
void VulkanResourceTrackingConsumer::Process_vkGetBufferMemoryRequirements(
const ApiCallInfo& call_info,
format::HandleId device,
format::HandleId buffer,
StructPointerDecoder<Decoded_VkMemoryRequirements>* pMemoryRequirements)
{
auto device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
auto buffer_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(buffer);
// retrieve trace buffer memory requirements
if (pMemoryRequirements != nullptr)
{
Decoded_VkMemoryRequirements* decoded_buffer_memory_requirements = pMemoryRequirements->GetMetaStructPointer();
if (decoded_buffer_memory_requirements != nullptr)
{
VkMemoryRequirements* trace_buffer_memory_requirements = decoded_buffer_memory_requirements->decoded_value;
if (trace_buffer_memory_requirements != nullptr)
{
buffer_info->SetTraceResourceSize(trace_buffer_memory_requirements->size);
buffer_info->SetTraceResourceAlignment(trace_buffer_memory_requirements->alignment);
buffer_info->SetTraceResourceMemoryTypeBits(trace_buffer_memory_requirements->memoryTypeBits);
}
}
}
// get replay buffer memory requirements
VkDevice in_device = device_info->GetHandleId();
VkBuffer in_buffer = buffer_info->GetBufferReplayHandleId();
VkMemoryRequirements* out_pMemoryRequirements = nullptr;
VkMemoryRequirements memory_requirement;
if (pMemoryRequirements != nullptr)
{
out_pMemoryRequirements = pMemoryRequirements->AllocateOutputData(1);
}
else
{
out_pMemoryRequirements = &memory_requirement;
}
GetDeviceTable(in_device)->GetBufferMemoryRequirements(in_device, in_buffer, out_pMemoryRequirements);
if (out_pMemoryRequirements != nullptr)
{
buffer_info->SetReplayResourceSize(out_pMemoryRequirements->size);
buffer_info->SetReplayResourceAlignment(out_pMemoryRequirements->alignment);
buffer_info->SetReplayResourceMemoryTypeBits(out_pMemoryRequirements->memoryTypeBits);
}
}
void VulkanResourceTrackingConsumer::Process_vkGetImageMemoryRequirements(
const ApiCallInfo& call_info,
format::HandleId device,
format::HandleId image,
StructPointerDecoder<Decoded_VkMemoryRequirements>* pMemoryRequirements)
{
auto device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
auto image_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(image);
// retrieve trace image memory requirements
if (pMemoryRequirements != nullptr)
{
Decoded_VkMemoryRequirements* decoded_image_memory_requirements = pMemoryRequirements->GetMetaStructPointer();
if (decoded_image_memory_requirements != nullptr)
{
VkMemoryRequirements* trace_image_memory_requirements = decoded_image_memory_requirements->decoded_value;
if (trace_image_memory_requirements != nullptr)
{
image_info->SetTraceResourceSize(trace_image_memory_requirements->size);
image_info->SetTraceResourceAlignment(trace_image_memory_requirements->alignment);
image_info->SetTraceResourceMemoryTypeBits(trace_image_memory_requirements->memoryTypeBits);
}
}
}
// get replay image memory requirement
VkDevice in_device = device_info->GetHandleId();
VkImage in_image = image_info->GetImageReplayHandleId();
VkMemoryRequirements* out_pMemoryRequirements = nullptr;
VkMemoryRequirements memory_requirement;
if (pMemoryRequirements != nullptr)
{
out_pMemoryRequirements = pMemoryRequirements->AllocateOutputData(1);
}
else
{
out_pMemoryRequirements = &memory_requirement;
}
GetDeviceTable(in_device)->GetImageMemoryRequirements(in_device, in_image, out_pMemoryRequirements);
if (out_pMemoryRequirements != nullptr)
{
image_info->SetReplayResourceSize(out_pMemoryRequirements->size);
image_info->SetReplayResourceAlignment(out_pMemoryRequirements->alignment);
image_info->SetReplayResourceMemoryTypeBits(out_pMemoryRequirements->memoryTypeBits);
}
}
void VulkanResourceTrackingConsumer::Process_vkDestroyInstance(
const ApiCallInfo& call_info,
format::HandleId instance,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* pAllocator)
{
auto instance_info = GetTrackedObjectInfoTable()->GetTrackedInstanceInfo(instance);
VkInstance in_instance = instance_info->GetHandleId();
GetInstanceTable(in_instance)->DestroyInstance(in_instance, nullptr);
}
void VulkanResourceTrackingConsumer::Process_vkDestroyDevice(
const ApiCallInfo& call_info,
format::HandleId device,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* pAllocator)
{
auto device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
VkDevice in_device = device_info->GetHandleId();
GetDeviceTable(in_device)->DestroyDevice(in_device, nullptr);
}
void VulkanResourceTrackingConsumer::Process_vkDestroyBuffer(
const ApiCallInfo& call_info,
format::HandleId device,
format::HandleId buffer,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* pAllocator)
{
auto device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
auto buffer_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(buffer);
VkDevice in_device = device_info->GetHandleId();
VkBuffer in_buffer = buffer_info->GetBufferReplayHandleId();
GetDeviceTable(in_device)->DestroyBuffer(in_device, in_buffer, nullptr);
}
void VulkanResourceTrackingConsumer::Process_vkDestroyImage(
const ApiCallInfo& call_info,
format::HandleId device,
format::HandleId image,
StructPointerDecoder<Decoded_VkAllocationCallbacks>* pAllocator)
{
auto device_info = GetTrackedObjectInfoTable()->GetTrackedDeviceInfo(device);
auto image_info = GetTrackedObjectInfoTable()->GetTrackedResourceInfo(image);
VkDevice in_device = device_info->GetHandleId();
VkImage in_image = image_info->GetImageReplayHandleId();
GetDeviceTable(in_device)->DestroyImage(in_device, in_image, nullptr);
}
void VulkanResourceTrackingConsumer::ProcessFillMemoryCommand(uint64_t memory_id,
uint64_t offset,
uint64_t size,
const uint8_t* data)
{
auto memory_info = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoryInfo(memory_id);
assert((memory_info != nullptr));
memory_info->InsertFilledMemoryOffsetsList(offset);
memory_info->InsertFilledMemorySizesList(size);
}
// Util function for sorting: compares two resources according to the trace binding offset number.
bool CompareOffset(TrackedResourceInfo* resource1, TrackedResourceInfo* resource2)
{
return (resource1->GetTraceBindOffset() < resource2->GetTraceBindOffset());
}
// Sort the bound resources in each device memory object according to their trace binding offset.
void VulkanResourceTrackingConsumer::SortMemoriesBoundResourcesByOffset()
{
auto tracked_device_memories_map = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoriesInfoMap();
assert(tracked_device_memories_map != nullptr);
for (auto& iterator : (*tracked_device_memories_map))
{
TrackedDeviceMemoryInfo tracked_device_memory = iterator.second;
std::vector<TrackedResourceInfo*>* resources = tracked_device_memory.GetBoundResourcesList();
if (resources != nullptr)
{
std::sort(resources->begin(), resources->end(), CompareOffset);
}
iterator.second = tracked_device_memory;
}
}
// TODO(gfxrec-28): split this function into smaller utility functions
// Calculate the replay binding offset and memory allocation size
void VulkanResourceTrackingConsumer::CalculateReplayBindingOffsetAndMemoryAllocationSize()
{
auto tracked_device_memories_map = GetTrackedObjectInfoTable()->GetTrackedDeviceMemoriesInfoMap();
assert(tracked_device_memories_map != nullptr);
for (auto& iterator : (*tracked_device_memories_map))
{
TrackedDeviceMemoryInfo tracked_device_memory = iterator.second;
std::vector<TrackedResourceInfo*>* resources = tracked_device_memory.GetBoundResourcesList();
if ((*resources).empty() == false)
{
// recalculate the replay binding offset by looping through the sorted bound resources
// and update the replay binding offset based on the memory alignment requirement
// and check for no/partial/complete overlap with previous bound resource memory
// during trace and update the replay binding offset and then memory allocation size
// accordingly.
VkDeviceSize replay_bind_offset = (*resources)[0]->GetTraceBindOffset();
// loop through the bound resources and update replay resource binding offset
// based on the memory alignment requirement and update memory allocation size
for (size_t i = 0; i < (*resources).size(); i++)
{
// assign replay bind offset to be the same as trace offset first
replay_bind_offset = (*resources)[i]->GetTraceBindOffset();
// make sure the assigned replay bind offset have the same alignment count as trace bind offset
// if trace alignment number is valid
VkDeviceSize current_trace_bind_offset = (*resources)[i]->GetTraceBindOffset();
VkDeviceSize current_trace_resource_alignment = (*resources)[i]->GetTraceResourceAlignment();
if (current_trace_resource_alignment > 0)
{
VkDeviceSize trace_bind_alignment_count =
current_trace_bind_offset / current_trace_resource_alignment;
replay_bind_offset = (*resources)[i]->GetReplayResourceAlignment() * trace_bind_alignment_count;
}
// than check for no/partial/complete overlap case for bound resources
if (i != 0)
{
size_t previous_resource_index = i - 1;
VkDeviceSize previous_trace_bind_offset =
(*resources)[previous_resource_index]->GetTraceBindOffset();
VkDeviceSize previous_trace_size = (*resources)[previous_resource_index]->GetTraceResourceSize();
// check for complete overlap
if (current_trace_bind_offset == previous_trace_bind_offset)
{
replay_bind_offset = (*resources)[previous_resource_index]->GetReplayBindOffset();
}
// check for no/partial overlap
else
{
// The check only valid when the app calls getimage/buffer memory requirements
// during trace (trace size is valid number > 0)
if (previous_trace_size > 0)
{
// check for no overlap: if no overlap during trace,
// update replay binding offset to be no overlap as well.
if (current_trace_bind_offset > previous_trace_bind_offset + previous_trace_size)
{
VkDeviceSize diff =
current_trace_bind_offset - (previous_trace_bind_offset + previous_trace_size);
// increment to avoid overlap with previous resources
VkDeviceSize previous_replay_bind_offset =
(*resources)[previous_resource_index]->GetReplayBindOffset();
VkDeviceSize previous_replay_resource_size =
(*resources)[previous_resource_index]->GetReplayResourceSize();
replay_bind_offset = previous_replay_bind_offset + previous_replay_resource_size + diff;
}
// check for partial overlap: if partial overlap during trace,
// update replay binding offset to be partial overlap as well.
else if ((current_trace_bind_offset > previous_trace_bind_offset) &&
(current_trace_bind_offset < previous_trace_bind_offset + previous_trace_size))
{
VkDeviceSize diff = current_trace_bind_offset - previous_trace_bind_offset;
// increment to avoid overlap with previous resources
VkDeviceSize previous_replay_bind_offset =
(*resources)[previous_resource_index]->GetReplayBindOffset();
replay_bind_offset = previous_replay_bind_offset + diff;
}
}
}
}
// make sure the replay binding offset number fulfills the replay alignment requirement
if ((*resources)[i]->GetReplayResourceAlignment() > 0)
{
VkDeviceSize alignment_remainder =
replay_bind_offset % (*resources)[i]->GetReplayResourceAlignment();
if (alignment_remainder != 0)
{
while ((replay_bind_offset % (*resources)[i]->GetReplayResourceAlignment()) != 0)
{
// increment offset and new memory allocation size until it aligned
replay_bind_offset++;
}
}
}
(*resources)[i]->SetReplayBindOffset(replay_bind_offset);
// update replay memory allocation size based on replay binding offset and size
VkDeviceSize replay_memory_allocation_size =
std::max(tracked_device_memory.GetReplayMemoryAllocationSize(),
replay_bind_offset + (*resources)[i]->GetReplayResourceSize());
tracked_device_memory.AllocateReplayMemoryAllocationSize(replay_memory_allocation_size);
}
iterator.second = tracked_device_memory;
}
}
}
GFXRECON_END_NAMESPACE(decode)
GFXRECON_END_NAMESPACE(gfxrecon)
|