File: simple-backend.cpp

package info (click to toggle)
ggml 0.9.4-7
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 17,140 kB
  • sloc: cpp: 107,161; ansic: 36,329; lisp: 9,094; python: 1,558; objc: 1,045; sh: 825; makefile: 77
file content (219 lines) | stat: -rw-r--r-- 6,454 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"

#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif

#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif

#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>

static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
    (void) level;
    (void) user_data;
    fputs(text, stderr);
    fflush(stderr);
}

// This is a simple model with two tensors a and b
struct simple_model {
    struct ggml_tensor * a;
    struct ggml_tensor * b;

    // the backend to perform the computation (CPU, CUDA, METAL)
    ggml_backend_t backend = NULL;

    // the backend buffer to storage the tensors data of a and b
    ggml_backend_buffer_t buffer;

    // the context to define the tensor information (dimensions, size, memory address)
    struct ggml_context * ctx;
};

// initialize the tensors of the model in this case two matrices 2x2
void load_model(simple_model & model, float * a, float * b, int rows_A, int cols_A, int rows_B, int cols_B) {
    ggml_log_set(ggml_log_callback_default, nullptr);

    // initialize the backend
#ifdef GGML_USE_CUDA
    fprintf(stderr, "%s: using CUDA backend\n", __func__);
    model.backend = ggml_backend_cuda_init(0); // init device 0
    if (!model.backend) {
        fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
    }
#endif

#ifdef GGML_USE_METAL
    fprintf(stderr, "%s: using Metal backend\n", __func__);
    model.backend = ggml_backend_metal_init();
    if (!model.backend) {
        fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
    }
#endif

    // if there aren't GPU Backends fallback to CPU backend
    if (!model.backend) {
        model.backend = ggml_backend_cpu_init();
    }

    int num_tensors = 2;

    struct ggml_init_params params {
            /*.mem_size   =*/ ggml_tensor_overhead() * num_tensors,
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
    };

    // create context
    model.ctx = ggml_init(params);

    // create tensors
    model.a = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, cols_A, rows_A);
    model.b = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, cols_B, rows_B);

    // create a backend buffer (backend memory) and alloc the tensors from the context
    model.buffer = ggml_backend_alloc_ctx_tensors(model.ctx, model.backend);

    // load data from cpu memory to backend buffer
    ggml_backend_tensor_set(model.a, a, 0, ggml_nbytes(model.a));
    ggml_backend_tensor_set(model.b, b, 0, ggml_nbytes(model.b));
}

// build the compute graph to perform a matrix multiplication
struct ggml_cgraph * build_graph(const simple_model& model) {
    static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
    static std::vector<uint8_t> buf(buf_size);

    struct ggml_init_params params0 = {
        /*.mem_size   =*/ buf_size,
        /*.mem_buffer =*/ buf.data(),
        /*.no_alloc   =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
    };

    // create a temporally context to build the graph
    struct ggml_context * ctx0 = ggml_init(params0);

    struct ggml_cgraph  * gf = ggml_new_graph(ctx0);

    // result = a*b^T
    struct ggml_tensor * result = ggml_mul_mat(ctx0, model.a, model.b);

    // build operations nodes
    ggml_build_forward_expand(gf, result);

    // delete the temporally context used to build the graph
    ggml_free(ctx0);
    return gf;
}

// compute with backend
struct ggml_tensor * compute(const simple_model & model, ggml_gallocr_t allocr) {
    // reset the allocator to free all the memory allocated during the previous inference

    struct ggml_cgraph * gf = build_graph(model);

    // allocate tensors
    ggml_gallocr_alloc_graph(allocr, gf);

    int n_threads = 1; // number of threads to perform some operations with multi-threading

    if (ggml_backend_is_cpu(model.backend)) {
        ggml_backend_cpu_set_n_threads(model.backend, n_threads);
    }

    ggml_backend_graph_compute(model.backend, gf);

    // in this case, the output tensor is the last one in the graph
    return ggml_graph_node(gf, -1);
}

int main(void) {
    ggml_time_init();

    // initialize data of matrices to perform matrix multiplication
    const int rows_A = 4, cols_A = 2;

    float matrix_A[rows_A * cols_A] = {
        2, 8,
        5, 1,
        4, 2,
        8, 6
    };

    const int rows_B = 3, cols_B = 2;
    /* Transpose([
        10, 9, 5,
        5, 9, 4
    ]) 2 rows, 3 cols */
    float matrix_B[rows_B * cols_B] = {
        10, 5,
        9, 9,
        5, 4
    };

    simple_model model;
    load_model(model, matrix_A, matrix_B, rows_A, cols_A, rows_B, cols_B);

    // calculate the temporaly memory required to compute
    ggml_gallocr_t allocr = NULL;

    {
        allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));

        // create the worst case graph for memory usage estimation
        struct ggml_cgraph * gf = build_graph(model);
        ggml_gallocr_reserve(allocr, gf);
        size_t mem_size = ggml_gallocr_get_buffer_size(allocr, 0);

        fprintf(stderr, "%s: compute buffer size: %.4f KB\n", __func__, mem_size/1024.0);
    }

    // perform computation
    struct ggml_tensor * result = compute(model, allocr);

    // create a array to print result
    std::vector<float> out_data(ggml_nelements(result));

    // bring the data from the backend memory
    ggml_backend_tensor_get(result, out_data.data(), 0, ggml_nbytes(result));

    // expected result:
    // [ 60.00 55.00 50.00 110.00
    //  90.00 54.00 54.00 126.00
    //  42.00 29.00 28.00 64.00 ]

    printf("mul mat (%d x %d) (transposed result):\n[", (int) result->ne[0], (int) result->ne[1]);
    for (int j = 0; j < result->ne[1] /* rows */; j++) {
        if (j > 0) {
            printf("\n");
        }

        for (int i = 0; i < result->ne[0] /* cols */; i++) {
            printf(" %.2f", out_data[j * result->ne[0] + i]);
        }
    }
    printf(" ]\n");

    // release backend memory used for computation
    ggml_gallocr_free(allocr);

    // free memory
    ggml_free(model.ctx);

    // release backend memory and free backend
    ggml_backend_buffer_free(model.buffer);
    ggml_backend_free(model.backend);
    return 0;
}