1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#include <ggml.h>
#include <ggml-cpu.h>
#include <ggml-alloc.h>
#include <ggml-backend.h>
#include <ggml-cpp.h>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <array>
#include <vector>
bool check_equal(const float * result, const float * expected, int64_t n) {
for (int i = 0; i < n; i++) {
if(std::abs(result[i] - expected[i]) > 1e-4) {
printf("result[%d] %f != %f expected[%d]\n", i, result[i], expected[i], i);
return false;
}
}
return true;
}
bool test_interpolate(char const* name,
std::array<int64_t, 4> src_ne, const float * src_data,
std::array<int32_t, 4> dst_ne, const float * expected,
uint32_t mode) {
ggml_time_init();
ggml_init_params params {
/*.mem_size =*/ 64 * ggml_tensor_overhead() + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true
};
ggml_context_ptr ctx_ptr{ggml_init(params)};
ggml_context * ctx = ctx_ptr.get();
ggml_cgraph * gf = ggml_new_graph(ctx);
// Build graph
ggml_tensor * src = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, src_ne.data());
ggml_tensor * res = ggml_interpolate(ctx, src, dst_ne[0], dst_ne[1], dst_ne[2], dst_ne[3], mode);
ggml_build_forward_expand(gf, res);
// Create backend & allocate buffers
ggml_backend_ptr backend_ptr{ggml_backend_cpu_init()};
ggml_backend_t backend = backend_ptr.get();
ggml_backend_cpu_set_n_threads(backend, 2);
ggml_backend_buffer_ptr buffer{ggml_backend_alloc_ctx_tensors(ctx, backend)};
// Execute and compare results
ggml_backend_tensor_set(src, src_data, 0, ggml_nbytes(src));
ggml_backend_graph_compute(backend, gf);
std::vector<float> res_values(ggml_nelements(res));
ggml_backend_tensor_get(res, res_values.data(), 0, ggml_nbytes(res));
bool passed = check_equal(res_values.data(), expected, ggml_nelements(res));
printf("ggml_interpolate(%s): %s\n", name, passed ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m");
return passed;
}
const float input_upscale[] = {
0.0f, 1.0f,
2.0f, 4.0f
};
const float expected_upscale_x2_nearest[] = {
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
2.0f, 2.0f, 4.0f, 4.0f,
2.0f, 2.0f, 4.0f, 4.0f
};
const float expected_upscale_x2_bilinear[] = {
0.0f, 0.2500f, 0.7500f, 1.00f,
0.5f, 0.8125f, 1.4375f, 1.75f,
1.5f, 1.9375f, 2.8125f, 3.25f,
2.0f, 2.5000f, 3.5000f, 4.00f
};
const float expected_upscale_x2_bilinear_align_corners[] = {
0.0000f, 0.3333f, 0.6667f, 1.0000f,
0.6667f, 1.1111f, 1.5556f, 2.0000f,
1.3333f, 1.8889f, 2.4444f, 3.0000f,
2.0000f, 2.6667f, 3.3333f, 4.0000f
};
const float expected_upscale_x1_5_bilinear_align_corners[] = {
0.0f, 1.0f,
1.0f, 2.5f,
2.0f, 4.0f
};
const float input_downscale[] = {
0.0f, -1.0f, -2.0f, 0.0f,
1.0f, 2.0f , 4.0f , 4.0f,
2.0f, 2.0f , 1.0f , 1.0f,
1.0f, 2.0f , 3.0f , 4.0f,
2.0f, 2.0f , 2.0f , 2.0f,
-2.0f, 2.0f, -4.0f, 4.0f
};
const float expected_downscale_nearest[] = {
0.0f, -2.0f,
1.0f, 3.0f
};
const float expected_downscale_bilinear[] = {
0.1667f, -0.3750f, 0.7500f,
1.7917f, 1.8750f, 1.7500f,
1.3750f, 2.3750f, 3.3750f,
-0.5000f, -0.2500f, 2.5000f
};
const float expected_downscale_bilinear_align_corners[] = {
0.0f , -1.5f, 0.0f,
2.0f , 1.5f, 1.0f,
1.0f , 2.5f, 4.0f,
-2.0f, -1.0f, 4.0f
};
int main() {
bool passed = true;
passed &= test_interpolate("upscale_x2_nearest",
{2, 2, 1, 1}, input_upscale,
{4, 4, 1, 1}, expected_upscale_x2_nearest,
GGML_SCALE_MODE_NEAREST);
passed &= test_interpolate("upscale_x2_bilinear",
{2, 2, 1, 1}, input_upscale,
{4, 4, 1, 1}, expected_upscale_x2_bilinear,
GGML_SCALE_MODE_BILINEAR);
passed &= test_interpolate("upscale_x2_bilinear_align_corners",
{2, 2, 1, 1}, input_upscale,
{4, 4, 1, 1}, expected_upscale_x2_bilinear_align_corners,
GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS);
passed &= test_interpolate("upscale_x1_5_bilinear_align_corners",
{2, 2, 1, 1}, input_upscale,
{2, 3, 1, 1}, expected_upscale_x1_5_bilinear_align_corners,
GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS);
passed &= test_interpolate("downscale_nearest",
{4, 3, 2, 1}, input_downscale,
{2, 1, 2, 1}, expected_downscale_nearest,
GGML_SCALE_MODE_NEAREST);
passed &= test_interpolate("downscale_bilinear",
{4, 3, 2, 1}, input_downscale,
{3, 2, 2, 1}, expected_downscale_bilinear,
GGML_SCALE_MODE_BILINEAR);
passed &= test_interpolate("downscale_bilinear_align_corners",
{4, 3, 2, 1}, input_downscale,
{3, 2, 2, 1}, expected_downscale_bilinear_align_corners,
GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS);
return passed ? 0 : 1;
}
|