1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
struct test_model {
struct ggml_tensor * weight;
struct ggml_tensor * input;
ggml_backend_t backend = NULL;
ggml_backend_buffer_t buffer;
struct ggml_context * ctx;
};
void load_model(test_model & model, bool use_gpu = false) {
// create data
int K = 3, IC = 2, OC = 2;
int IL = 6, N = 1;
// Initialize adata
float weight_data[6] = {10.0f, 20.0f, 30.0f, 0.1f, 0.2f, 0.3f};
// Convert adata to fp16 format
std::vector<ggml_fp16_t> h_weight_data(K * IC);
ggml_fp32_to_fp16_row(weight_data, h_weight_data.data(), K * IC);
// Initialize input data, 2 channels, 6 timesteps, 1 batch
float input_data[12] = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
};
size_t buffer_size = 0;
{
buffer_size += K * IC * ggml_type_size(GGML_TYPE_F16); // tensor weight
buffer_size += IL * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor input
buffer_size += 1024; // overhead
}
printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f));
ggml_log_set(ggml_log_callback_default, nullptr);
int num_tensors = 2;
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
// initialize the backend
#ifdef GGML_USE_CUDA
if (use_gpu) {
fprintf(stderr, "%s: using CUDA backend\n", __func__);
model.backend = ggml_backend_cuda_init(0);
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
}
#endif
#ifdef GGML_USE_METAL
if (use_gpu) {
fprintf(stderr, "%s: using Metal backend\n", __func__);
model.backend = ggml_backend_metal_init();
if (!model.backend) {
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
}
}
#endif
if(!model.backend) {
// fallback to CPU backend
model.backend = ggml_backend_cpu_init();
}
model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size);
// create context
model.ctx = ggml_init(params);
// create tensors
// A Pytorch grouped Conv1d weight parameter is of shape (out_channels, input_channels/groups, kernel_size)
model.weight = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F16, K, 1, IC);
model.input = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, IL, IC, N);
// create a allocator
ggml_tallocr alloc = ggml_tallocr_new(model.buffer);
// alloc memory
ggml_tallocr_alloc(&alloc, model.weight);
// load data to buffer
if(ggml_backend_is_cpu(model.backend)) {
memcpy(model.weight->data, h_weight_data.data(), ggml_nbytes(model.weight));
} else {
ggml_backend_tensor_set(model.weight, h_weight_data.data(), 0, ggml_nbytes(model.weight));
}
// alloc memory
ggml_tallocr_alloc(&alloc, model.input);
if(ggml_backend_is_cpu(model.backend)
#ifdef GGML_USE_METAL
|| ggml_backend_is_metal(model.backend)
#endif
) {
memcpy(model.input->data, input_data, ggml_nbytes(model.input));
} else {
ggml_backend_tensor_set(model.input, input_data, 0, ggml_nbytes(model.input));
}
}
struct ggml_cgraph * build_graph(const test_model& model) {
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params0 = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
// create a temporally context to build the graph
struct ggml_context * ctx0 = ggml_init(params0);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
int s0 = 3;
int p0 = 0;
int d0 = 1;
struct ggml_tensor* conv1d_dw_res = ggml_conv_1d_dw(ctx0, model.weight, model.input, s0, p0, d0);
ggml_set_name(conv1d_dw_res, "conv1d_dw_res");
ggml_build_forward_expand(gf, conv1d_dw_res);
// delete the temporally context used to build the graph
ggml_free(ctx0);
return gf;
}
struct ggml_cgraph* compute_graph(const test_model & model, ggml_gallocr_t allocr) {
struct ggml_cgraph * gf = build_graph(model);
// allocate tensors
ggml_gallocr_alloc_graph(allocr, gf);
int n_threads = 1;
if (ggml_backend_is_cpu(model.backend)) {
ggml_backend_cpu_set_n_threads(model.backend, n_threads);
}
ggml_backend_graph_compute(model.backend, gf);
//ggml_graph_print(gf);
return gf;
}
int main(void)
{
ggml_time_init();
test_model model;
load_model(model, true);
ggml_gallocr_t allocr = NULL;
{
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
//create the worst case graph for memory usage estimation
struct ggml_cgraph * gf = build_graph(model);
// compute the required memory
ggml_gallocr_reserve(allocr, gf);
size_t mem_size = ggml_gallocr_get_buffer_size(allocr, 0);
fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
}
struct ggml_cgraph * gf_res = compute_graph(model, allocr);
struct ggml_tensor * conv1d_dw_res = NULL;
for(int i = 0; i < ggml_graph_n_nodes(gf_res); i++) {
if(strcmp(ggml_get_name(ggml_graph_node(gf_res, i)), "conv1d_dw_res") == 0) {
conv1d_dw_res = ggml_graph_node(gf_res, i);
}
}
std::vector<float> conv2d_data(ggml_nelements(conv1d_dw_res));
ggml_backend_tensor_get(conv1d_dw_res, conv2d_data.data(), 0, ggml_nbytes(conv1d_dw_res));
const int n_conv1d_dw_test = 4;
float expected_conv1d_dw[n_conv1d_dw_test] = {
60.0f, 60.0f, 0.6f, 0.6f
};
printf("\nPerforming test:\n");
bool passed = true;
passed = true;
for(int i = 0; i < n_conv1d_dw_test; i++) {
if(std::abs(conv2d_data[i] - expected_conv1d_dw[i]) > 1e-4) {
passed = false;
break;
}
}
printf("ggml_conv1d (%d): %s\n", (int) ggml_nelements(conv1d_dw_res), passed && (ggml_nelements(conv1d_dw_res) == n_conv1d_dw_test) ? "\033[32mPASSED\033[0m" : "\033[31mFAILED\033[0m");
ggml_free(model.ctx);
ggml_backend_buffer_free(model.buffer);
ggml_backend_free(model.backend);
ggml_gallocr_free(allocr);
return 0;
}
|