1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
struct ggml_context* make_ctx(void) {
struct ggml_init_params params = {
/*.mem_size =*/ 2 * 1024 * 1024,
/*.mem_buffer =*/ nullptr,
/*.no_alloc. =*/ false
};
return ggml_init(params);
}
void check_tensor(struct ggml_tensor * t, float * expected_t_d, int ne0, int ne1, int ne2) {
GGML_ASSERT(t->type == GGML_TYPE_F32);
GGML_ASSERT(t->ne[0] == ne0);
GGML_ASSERT(t->ne[1] == ne1);
GGML_ASSERT(t->ne[2] == ne2);
for (int i2 = 0; i2 < ne2; ++i2) {
for (int i1 = 0; i1 < ne1; ++i1) {
for (int i0 = 0; i0 < ne0; ++i0) {
float expected = *(expected_t_d + i2 * ne1 * ne0 + i1 * ne0 + i0);
float actual = ggml_get_data_f32(t)[i2 * ne1 * ne0 + i1 * ne0 + i0];
if (expected != actual) {
printf("expected %.1f, got %.1f at (%d,%d,%d)\n", expected, actual, i0, i1, i2);
}
GGML_ASSERT(expected == actual);
}
}
}
}
void test_pad_reflect_1d(bool use_gpu) {
ggml_backend_t backend = NULL;
struct ggml_init_params params;
ggml_backend_buffer_t buffer;
struct ggml_context * ctx;
struct ggml_tallocr tallocr;
ggml_gallocr_t gallocr;
// initialize the backend
#ifdef GGML_USE_CUDA
if (use_gpu) {
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0);
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
}
#endif
#ifdef GGML_USE_METAL
if (use_gpu) {
fprintf(stderr, "%s: using Metal backend\n", __func__);
backend = ggml_backend_metal_init();
if (!backend) {
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
}
}
#endif
if (!backend) {
fprintf(stderr, "%s: using CPU backend\n", __func__);
backend = ggml_backend_cpu_init();
}
// Test cases for different padding configurations
{
params = ggml_init_params{
/*.mem_size =*/ 16*1024*1024,
/*.mem_buffer =*/ nullptr,
/*.no_alloc. =*/ true
};
ggml_log_set(ggml_log_callback_default, nullptr);
ctx = ggml_init(params);
buffer = ggml_backend_alloc_buffer(backend, 16*1024*1024);
tallocr = ggml_tallocr_new(buffer);
gallocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
// Create a simple 1D input tensor [1, 2, 3, 4]
struct ggml_tensor * t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4);
float input_data[] = {1.0f, 2.0f, 3.0f, 4.0f};
ggml_tallocr_alloc(&tallocr, t);
// load data to buffer
if(ggml_backend_is_cpu(backend)) {
memcpy(t->data, input_data, ggml_nbytes(t));
} else {
ggml_backend_tensor_set(t, input_data, 0, ggml_nbytes(t));
}
// Test case 1: pad left=1, right=1
// Expected: [2, 1, 2, 3, 4, 3]
float expected_1[] = {2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f};
struct ggml_tensor * out_1 = ggml_pad_reflect_1d(ctx, t, 1, 1);
// Test case 2: pad left=2, right=1
// Expected: [3, 2, 1, 2, 3, 4, 3]
float expected_2[] = {3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f};
struct ggml_tensor * out_2 = ggml_pad_reflect_1d(ctx, t, 2, 1);
// Test case 3: pad left=1, right=2
// Expected: [2, 1, 2, 3, 4, 3, 2]
float expected_3[] = {2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f, 2.0f};
struct ggml_tensor * out_3 = ggml_pad_reflect_1d(ctx, t, 1, 2);
struct ggml_cgraph * gf = ggml_new_graph(ctx);
ggml_build_forward_expand(gf, out_1);
ggml_build_forward_expand(gf, out_2);
ggml_build_forward_expand(gf, out_3);
ggml_gallocr_alloc_graph(gallocr, gf);
ggml_backend_graph_compute(backend, gf);
check_tensor(out_1, expected_1, 6, 1, 1);
check_tensor(out_2, expected_2, 7, 1, 1);
check_tensor(out_3, expected_3, 7, 1, 1);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_gallocr_free(gallocr);
}
{
params = ggml_init_params{
/*.mem_size =*/ 16*1024*1024,
/*.mem_buffer =*/ nullptr,
/*.no_alloc. =*/ true
};
ggml_log_set(ggml_log_callback_default, nullptr);
ctx = ggml_init(params);
buffer = ggml_backend_alloc_buffer(backend, 16*1024*1024);
tallocr = ggml_tallocr_new(buffer);
gallocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
// Create a 2D input tensor (5 columns × 4 rows)
struct ggml_tensor * t = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 5, 4);
float input_data[] = {
1.0f, 2.0f, 3.0f, 4.0f, 5.0f, // row 1
6.0f, 7.0f, 8.0f, 9.0f, 10.0f, // row 2
11.0f, 12.0f, 13.0f, 14.0f, 15.0f, // row 3
16.0f, 17.0f, 18.0f, 19.0f, 20.0f // row 4
};
ggml_tallocr_alloc(&tallocr, t);
// load data to buffer
if(ggml_backend_is_cpu(backend)) {
memcpy(t->data, input_data, ggml_nbytes(t));
} else {
ggml_backend_tensor_set(t, input_data, 0, ggml_nbytes(t));
}
// Test case 4: pad left=3, right=2 on a 2D tensor
// Each row should be padded independently
float expected_4[] = {
4.0f, 3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 4.0f, 3.0f, // row 1
9.0f, 8.0f, 7.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 9.0f, 8.0f, // row 2
14.0f, 13.0f, 12.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 14.0f, 13.0f, // row 3
19.0f, 18.0f, 17.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 19.0f, 18.0f // row 4
};
struct ggml_tensor * out_4 = ggml_pad_reflect_1d(ctx, t, 3, 2);
struct ggml_cgraph * gf = ggml_new_graph(ctx);
ggml_build_forward_expand(gf, out_4);
ggml_gallocr_alloc_graph(gallocr, gf);
ggml_backend_graph_compute(backend, gf);
check_tensor(out_4, expected_4, 10, 4, 1);
ggml_free(ctx);
ggml_gallocr_free(gallocr);
ggml_backend_buffer_free(buffer);
}
ggml_backend_free(backend);
}
int main(int argc, const char * argv[]) {
bool use_gpu = false;
if (argc > 1) {
use_gpu = strcmp(argv[1], "--gpu") == 0;
}
test_pad_reflect_1d(use_gpu);
return 0;
}
|