File: test-pad-reflect-1d.cpp

package info (click to toggle)
ggml 0.9.5-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 19,092 kB
  • sloc: cpp: 120,570; ansic: 44,609; lisp: 10,053; python: 1,591; objc: 1,349; sh: 827; makefile: 73
file content (213 lines) | stat: -rw-r--r-- 6,905 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"

#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif

#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif

#include <string.h>
#include <stdio.h>
#include <stdlib.h>


static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
    (void) level;
    (void) user_data;
    fputs(text, stderr);
    fflush(stderr);
}

struct ggml_context* make_ctx(void) {
    struct ggml_init_params params = {
        /*.mem_size   =*/ 2 * 1024 * 1024,
        /*.mem_buffer =*/ nullptr,
        /*.no_alloc.  =*/ false
    };
    return ggml_init(params);
}

void check_tensor(struct ggml_tensor * t, float * expected_t_d, int ne0, int ne1, int ne2) {
    GGML_ASSERT(t->type == GGML_TYPE_F32);
    GGML_ASSERT(t->ne[0] == ne0);
    GGML_ASSERT(t->ne[1] == ne1);
    GGML_ASSERT(t->ne[2] == ne2);
    for (int i2 = 0; i2 < ne2; ++i2) {
        for (int i1 = 0; i1 < ne1; ++i1) {
            for (int i0 = 0; i0 < ne0; ++i0) {
                float expected = *(expected_t_d + i2 * ne1 * ne0 + i1 * ne0 + i0);
                float actual = ggml_get_data_f32(t)[i2 * ne1 * ne0 + i1 * ne0 + i0];
                if (expected != actual) {
                    printf("expected %.1f, got %.1f at (%d,%d,%d)\n", expected, actual, i0, i1, i2);
                }
                GGML_ASSERT(expected == actual);
            }
        }
    }
}

void test_pad_reflect_1d(bool use_gpu) {
    ggml_backend_t backend = NULL;
    struct ggml_init_params params;
    ggml_backend_buffer_t buffer;
    struct ggml_context * ctx;
    struct ggml_tallocr tallocr;
    ggml_gallocr_t gallocr;

    // initialize the backend
#ifdef GGML_USE_CUDA
    if (use_gpu) {
        fprintf(stderr, "%s: using CUDA backend\n", __func__);
        backend = ggml_backend_cuda_init(0);
        if (!backend) {
            fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
        }
    }
#endif

#ifdef GGML_USE_METAL
    if (use_gpu) {
        fprintf(stderr, "%s: using Metal backend\n", __func__);
        backend = ggml_backend_metal_init();
        if (!backend) {
            fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
        }
    }
#endif

    if (!backend) {
        fprintf(stderr, "%s: using CPU backend\n", __func__);
        backend = ggml_backend_cpu_init();
    }

    // Test cases for different padding configurations
    {
        params = ggml_init_params{
            /*.mem_size   =*/ 16*1024*1024,
            /*.mem_buffer =*/ nullptr,
            /*.no_alloc.  =*/ true
        };

        ggml_log_set(ggml_log_callback_default, nullptr);

        ctx = ggml_init(params);
        buffer = ggml_backend_alloc_buffer(backend, 16*1024*1024);
        tallocr = ggml_tallocr_new(buffer);
        gallocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));

        // Create a simple 1D input tensor [1, 2, 3, 4]
        struct ggml_tensor * t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4);
        float input_data[] = {1.0f, 2.0f, 3.0f, 4.0f};
        ggml_tallocr_alloc(&tallocr, t);

        // load data to buffer
        if(ggml_backend_is_cpu(backend)) {
            memcpy(t->data, input_data, ggml_nbytes(t));
        } else {
            ggml_backend_tensor_set(t, input_data, 0, ggml_nbytes(t));
        }

        // Test case 1: pad left=1, right=1
        // Expected: [2, 1, 2, 3, 4, 3]
        float expected_1[] = {2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f};
        struct ggml_tensor * out_1 = ggml_pad_reflect_1d(ctx, t, 1, 1);

        // Test case 2: pad left=2, right=1
        // Expected: [3, 2, 1, 2, 3, 4, 3]
        float expected_2[] = {3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f};
        struct ggml_tensor * out_2 = ggml_pad_reflect_1d(ctx, t, 2, 1);

        // Test case 3: pad left=1, right=2
        // Expected: [2, 1, 2, 3, 4, 3, 2]
        float expected_3[] = {2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 3.0f, 2.0f};
        struct ggml_tensor * out_3 = ggml_pad_reflect_1d(ctx, t, 1, 2);

        struct ggml_cgraph * gf = ggml_new_graph(ctx);
        ggml_build_forward_expand(gf, out_1);
        ggml_build_forward_expand(gf, out_2);
        ggml_build_forward_expand(gf, out_3);

        ggml_gallocr_alloc_graph(gallocr, gf);

        ggml_backend_graph_compute(backend, gf);

        check_tensor(out_1, expected_1, 6, 1, 1);
        check_tensor(out_2, expected_2, 7, 1, 1);
        check_tensor(out_3, expected_3, 7, 1, 1);

        ggml_free(ctx);
        ggml_backend_buffer_free(buffer);
        ggml_gallocr_free(gallocr);
    }

    {
        params = ggml_init_params{
            /*.mem_size   =*/ 16*1024*1024,
            /*.mem_buffer =*/ nullptr,
            /*.no_alloc.  =*/ true
        };

        ggml_log_set(ggml_log_callback_default, nullptr);

        ctx = ggml_init(params);
        buffer = ggml_backend_alloc_buffer(backend, 16*1024*1024);
        tallocr = ggml_tallocr_new(buffer);
        gallocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));

        // Create a 2D input tensor (5 columns × 4 rows)
        struct ggml_tensor * t = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 5, 4);
        float input_data[] = {
            1.0f, 2.0f, 3.0f, 4.0f, 5.0f,  // row 1
            6.0f, 7.0f, 8.0f, 9.0f, 10.0f, // row 2
            11.0f, 12.0f, 13.0f, 14.0f, 15.0f, // row 3
            16.0f, 17.0f, 18.0f, 19.0f, 20.0f  // row 4
        };
        ggml_tallocr_alloc(&tallocr, t);

        // load data to buffer
        if(ggml_backend_is_cpu(backend)) {
            memcpy(t->data, input_data, ggml_nbytes(t));
        } else {
            ggml_backend_tensor_set(t, input_data, 0, ggml_nbytes(t));
        }

        // Test case 4: pad left=3, right=2 on a 2D tensor
        // Each row should be padded independently
        float expected_4[] = {
            4.0f, 3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 4.0f, 3.0f,  // row 1
            9.0f, 8.0f, 7.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 9.0f, 8.0f, // row 2
            14.0f, 13.0f, 12.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 14.0f, 13.0f, // row 3
            19.0f, 18.0f, 17.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 19.0f, 18.0f  // row 4
        };
        struct ggml_tensor * out_4 = ggml_pad_reflect_1d(ctx, t, 3, 2);

        struct ggml_cgraph * gf = ggml_new_graph(ctx);
        ggml_build_forward_expand(gf, out_4);

        ggml_gallocr_alloc_graph(gallocr, gf);

        ggml_backend_graph_compute(backend, gf);

        check_tensor(out_4, expected_4, 10, 4, 1);

        ggml_free(ctx);
        ggml_gallocr_free(gallocr);
        ggml_backend_buffer_free(buffer);
    }

    ggml_backend_free(backend);
}

int main(int argc, const char * argv[]) {
    bool use_gpu = false;
    if (argc > 1) {
        use_gpu = strcmp(argv[1], "--gpu") == 0;
    }
    test_pad_reflect_1d(use_gpu);
    return 0;
}