1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-opt.h"
#include "mnist-common.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdint>
#include <fstream>
#include <random>
#include <string>
#include <utility>
bool mnist_image_load(const std::string & fname, ggml_opt_dataset_t dataset) {
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "failed to open images file %s\n", fname.c_str());
return false;
}
fin.seekg(16);
uint8_t image[MNIST_NINPUT];
struct ggml_tensor * images = ggml_opt_dataset_data(dataset);
float * buf = ggml_get_data_f32(images);
GGML_ASSERT(images->ne[0] == MNIST_NINPUT);
for (int64_t iex = 0; iex < images->ne[1]; ++iex) {
fin.read((char *) image, sizeof(image));
for (int64_t i = 0; i < MNIST_NINPUT; ++i) {
buf[iex*MNIST_NINPUT + i] = image[i] / 255.0f; // Normalize to [0, 1]
}
}
return true;
}
void mnist_image_print(FILE * stream, ggml_opt_dataset_t dataset, const int iex) {
struct ggml_tensor * images = ggml_opt_dataset_data(dataset);
GGML_ASSERT(images->ne[0] == MNIST_NINPUT);
GGML_ASSERT(iex < images->ne[1]);
const float * image = ggml_get_data_f32(images) + iex*MNIST_NINPUT;
for (int64_t row = 0; row < MNIST_HW; row++) {
for (int64_t col = 0; col < MNIST_HW; col++) {
const int rgb = roundf(255.0f * image[row*MNIST_HW + col]);
#ifdef _WIN32
fprintf(stream, "%s", rgb >= 220 ? "##" : "__"); // Represented via text.
#else
fprintf(stream, "\033[48;2;%d;%d;%dm \033[0m", rgb, rgb, rgb); // Represented via colored blocks.
#endif // _WIN32
}
fprintf(stream, "\n");
}
}
bool mnist_label_load(const std::string & fname, ggml_opt_dataset_t dataset) {
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "failed to open labels file %s\n", fname.c_str());
return 0;
}
fin.seekg(8);
uint8_t label;
struct ggml_tensor * labels = ggml_opt_dataset_labels(dataset);
float * buf = ggml_get_data_f32(labels);
GGML_ASSERT(labels->ne[0] == MNIST_NCLASSES);
for (int64_t iex = 0; iex < labels->ne[1]; ++iex) {
fin.read((char *) &label, sizeof(label));
for (int64_t i = 0; i < MNIST_NCLASSES; ++i) {
buf[iex*MNIST_NCLASSES + i] = i == label ? 1.0f : 0.0f;
}
}
return true;
}
// Temporary util function for loading data from GGUF to a backend != CPU until GGML itself provides this functionality:
bool load_from_gguf(const char * fname, struct ggml_context * ctx_ggml, struct gguf_context * ctx_gguf) {
FILE * f = ggml_fopen(fname, "rb");
if (!f) {
return false;
}
const size_t buf_size = 4*1024*1024;
void * buf = malloc(buf_size);
const int n_tensors = gguf_get_n_tensors(ctx_gguf);
for (int i = 0; i < n_tensors; i++) {
const char * name = gguf_get_tensor_name(ctx_gguf, i);
struct ggml_tensor * tensor = ggml_get_tensor(ctx_ggml, name);
if (!tensor) {
continue;
}
const size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i);
if (fseek(f, offs, SEEK_SET) != 0) {
fclose(f);
free(buf);
return false;
}
const size_t nbytes = ggml_nbytes(tensor);
for (size_t pos = 0; pos < nbytes; pos += buf_size) {
const size_t nbytes_cpy = buf_size < nbytes - pos ? buf_size : nbytes - pos;
if (fread(buf, 1, nbytes_cpy, f) != nbytes_cpy) {
fclose(f);
free(buf);
return false;
}
ggml_backend_tensor_set(tensor, buf, pos, nbytes_cpy);
}
}
fclose(f);
free(buf);
return true;
}
mnist_model mnist_model_init_from_file(const std::string & fname, const std::string & backend, const int nbatch_logical, const int nbatch_physical) {
mnist_model model(backend, nbatch_logical, nbatch_physical);
fprintf(stderr, "%s: loading model weights from '%s'\n", __func__, fname.c_str());
struct gguf_context * ctx;
{
struct gguf_init_params params = {
/*.no_alloc =*/ true,
/*.ctx =*/ &model.ctx_gguf,
};
ctx = gguf_init_from_file(fname.c_str(), params);
if (!ctx) {
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
exit(1);
}
}
model.arch = gguf_get_val_str(ctx, gguf_find_key(ctx, "general.architecture"));
fprintf(stderr, "%s: model arch is %s\n", __func__, model.arch.c_str());
if (model.arch == "mnist-fc") {
model.fc1_weight = ggml_get_tensor(model.ctx_gguf, "fc1.weight");
GGML_ASSERT(model.fc1_weight->ne[0] == MNIST_NINPUT);
GGML_ASSERT(model.fc1_weight->ne[1] == MNIST_NHIDDEN);
GGML_ASSERT(model.fc1_weight->ne[2] == 1);
GGML_ASSERT(model.fc1_weight->ne[3] == 1);
model.fc1_bias = ggml_get_tensor(model.ctx_gguf, "fc1.bias");
GGML_ASSERT(model.fc1_bias->ne[0] == MNIST_NHIDDEN);
GGML_ASSERT(model.fc1_bias->ne[1] == 1);
GGML_ASSERT(model.fc1_bias->ne[2] == 1);
GGML_ASSERT(model.fc1_bias->ne[3] == 1);
model.fc2_weight = ggml_get_tensor(model.ctx_gguf, "fc2.weight");
GGML_ASSERT(model.fc2_weight->ne[0] == MNIST_NHIDDEN);
GGML_ASSERT(model.fc2_weight->ne[1] == MNIST_NCLASSES);
GGML_ASSERT(model.fc2_weight->ne[2] == 1);
GGML_ASSERT(model.fc2_weight->ne[3] == 1);
model.fc2_bias = ggml_get_tensor(model.ctx_gguf, "fc2.bias");
GGML_ASSERT(model.fc2_bias->ne[0] == MNIST_NCLASSES);
GGML_ASSERT(model.fc2_bias->ne[1] == 1);
GGML_ASSERT(model.fc2_bias->ne[2] == 1);
GGML_ASSERT(model.fc2_bias->ne[3] == 1);
} else if (model.arch == "mnist-cnn") {
model.conv1_kernel = ggml_get_tensor(model.ctx_gguf, "conv1.kernel");
GGML_ASSERT(model.conv1_kernel->type == GGML_TYPE_F32);
GGML_ASSERT(model.conv1_kernel->ne[0] == 3);
GGML_ASSERT(model.conv1_kernel->ne[1] == 3);
GGML_ASSERT(model.conv1_kernel->ne[2] == 1);
GGML_ASSERT(model.conv1_kernel->ne[3] == MNIST_CNN_NCB);
model.conv1_bias = ggml_get_tensor(model.ctx_gguf, "conv1.bias");
GGML_ASSERT(model.conv1_bias->type == GGML_TYPE_F32);
GGML_ASSERT(model.conv1_bias->ne[0] == 1);
GGML_ASSERT(model.conv1_bias->ne[1] == 1);
GGML_ASSERT(model.conv1_bias->ne[2] == MNIST_CNN_NCB);
GGML_ASSERT(model.conv1_bias->ne[3] == 1);
model.conv2_kernel = ggml_get_tensor(model.ctx_gguf, "conv2.kernel");
GGML_ASSERT(model.conv2_kernel->type == GGML_TYPE_F32);
GGML_ASSERT(model.conv2_kernel->ne[0] == 3);
GGML_ASSERT(model.conv2_kernel->ne[1] == 3);
GGML_ASSERT(model.conv2_kernel->ne[2] == MNIST_CNN_NCB);
GGML_ASSERT(model.conv2_kernel->ne[3] == MNIST_CNN_NCB*2);
model.conv2_bias = ggml_get_tensor(model.ctx_gguf, "conv2.bias");
GGML_ASSERT(model.conv2_bias->type == GGML_TYPE_F32);
GGML_ASSERT(model.conv2_bias->ne[0] == 1);
GGML_ASSERT(model.conv2_bias->ne[1] == 1);
GGML_ASSERT(model.conv2_bias->ne[2] == MNIST_CNN_NCB*2);
GGML_ASSERT(model.conv2_bias->ne[3] == 1);
model.dense_weight = ggml_get_tensor(model.ctx_gguf, "dense.weight");
GGML_ASSERT(model.dense_weight->type == GGML_TYPE_F32);
GGML_ASSERT(model.dense_weight->ne[0] == (MNIST_HW/4)*(MNIST_HW/4)*(MNIST_CNN_NCB*2));
GGML_ASSERT(model.dense_weight->ne[1] == MNIST_NCLASSES);
GGML_ASSERT(model.dense_weight->ne[2] == 1);
GGML_ASSERT(model.dense_weight->ne[3] == 1);
model.dense_bias = ggml_get_tensor(model.ctx_gguf, "dense.bias");
GGML_ASSERT(model.dense_bias->type == GGML_TYPE_F32);
GGML_ASSERT(model.dense_bias->ne[0] == MNIST_NCLASSES);
GGML_ASSERT(model.dense_bias->ne[1] == 1);
GGML_ASSERT(model.dense_bias->ne[2] == 1);
GGML_ASSERT(model.dense_bias->ne[3] == 1);
} else {
fprintf(stderr, "%s: unknown model arch: %s\n", __func__, model.arch.c_str());
}
model.buf_gguf = ggml_backend_alloc_ctx_tensors(model.ctx_gguf, model.backends[0]);
if(!load_from_gguf(fname.c_str(), model.ctx_gguf, ctx)) {
fprintf(stderr, "%s: loading weights from %s failed\n", __func__, fname.c_str());
exit(1);
}
// The space in ctx_gguf exactly fits the model weights,
// the images (which also need to be statically allocated) need to be put in a different context.
model.images = ggml_new_tensor_2d(model.ctx_static, GGML_TYPE_F32, MNIST_NINPUT, nbatch_physical);
ggml_set_name(model.images, "images");
ggml_set_input(model.images);
model.buf_static = ggml_backend_alloc_ctx_tensors(model.ctx_static, model.backends[0]);
fprintf(stderr, "%s: successfully loaded weights from %s\n", __func__, fname.c_str());
return model;
}
mnist_model mnist_model_init_random(const std::string & arch, const std::string & backend, const int nbatch_logical, const int nbatch_physical) {
mnist_model model(backend, nbatch_logical, nbatch_physical);
model.arch = arch;
std::random_device rd{};
std::mt19937 gen{rd()};
std::normal_distribution<float> nd{0.0f, 1e-2f};
std::vector<ggml_tensor *> init_tensors;
if (model.arch == "mnist-fc") {
fprintf(stderr, "%s: initializing random weights for a fully connected model\n", __func__);
model.fc1_weight = ggml_new_tensor_2d(model.ctx_static, GGML_TYPE_F32, MNIST_NINPUT, MNIST_NHIDDEN);
model.fc1_bias = ggml_new_tensor_1d(model.ctx_static, GGML_TYPE_F32, MNIST_NHIDDEN);
model.fc2_weight = ggml_new_tensor_2d(model.ctx_static, GGML_TYPE_F32, MNIST_NHIDDEN, MNIST_NCLASSES);
model.fc2_bias = ggml_new_tensor_1d(model.ctx_static, GGML_TYPE_F32, MNIST_NCLASSES);
ggml_set_name(model.fc1_weight, "fc1.weight");
ggml_set_name(model.fc1_bias, "fc1.bias");
ggml_set_name(model.fc2_weight, "fc2.weight");
ggml_set_name(model.fc2_bias, "fc2.bias");
init_tensors.push_back(model.fc1_weight);
init_tensors.push_back(model.fc1_bias);
init_tensors.push_back(model.fc2_weight);
init_tensors.push_back(model.fc2_bias);
} else if (model.arch == "mnist-cnn") {
model.conv1_kernel = ggml_new_tensor_4d(model.ctx_static, GGML_TYPE_F32, 3, 3, 1, MNIST_CNN_NCB);
model.conv1_bias = ggml_new_tensor_3d(model.ctx_static, GGML_TYPE_F32, 1, 1, MNIST_CNN_NCB);
model.conv2_kernel = ggml_new_tensor_4d(model.ctx_static, GGML_TYPE_F32, 3, 3, MNIST_CNN_NCB, MNIST_CNN_NCB*2);
model.conv2_bias = ggml_new_tensor_3d(model.ctx_static, GGML_TYPE_F32, 1, 1, MNIST_CNN_NCB*2);
model.dense_weight = ggml_new_tensor_2d(model.ctx_static, GGML_TYPE_F32, (MNIST_HW/4)*(MNIST_HW/4)*(MNIST_CNN_NCB*2), MNIST_NCLASSES);
model.dense_bias = ggml_new_tensor_1d(model.ctx_static, GGML_TYPE_F32, MNIST_NCLASSES);
ggml_set_name(model.conv1_kernel, "conv1.kernel");
ggml_set_name(model.conv1_bias, "conv1.bias");
ggml_set_name(model.conv2_kernel, "conv2.kernel");
ggml_set_name(model.conv2_bias, "conv2.bias");
ggml_set_name(model.dense_weight, "dense.weight");
ggml_set_name(model.dense_bias, "dense.bias");
init_tensors.push_back(model.conv1_kernel);
init_tensors.push_back(model.conv1_bias);
init_tensors.push_back(model.conv2_kernel);
init_tensors.push_back(model.conv2_bias);
init_tensors.push_back(model.dense_weight);
init_tensors.push_back(model.dense_bias);
} else {
fprintf(stderr, "%s: unknown model arch: %s\n", __func__, model.arch.c_str());
}
model.images = ggml_new_tensor_2d(model.ctx_static, GGML_TYPE_F32, MNIST_NINPUT, MNIST_NBATCH_PHYSICAL);
ggml_set_name(model.images, "images");
ggml_set_input(model.images);
model.buf_static = ggml_backend_alloc_ctx_tensors(model.ctx_static, model.backends[0]);
for (ggml_tensor * t : init_tensors) {
GGML_ASSERT(t->type == GGML_TYPE_F32);
const int64_t ne = ggml_nelements(t);
std::vector<float> tmp(ne);
for (int64_t i = 0; i < ne; ++i) {
tmp[i] = nd(gen);
}
ggml_backend_tensor_set(t, tmp.data(), 0, ggml_nbytes(t));
}
return model;
}
void mnist_model_build(mnist_model & model) {
if (model.arch == "mnist-fc") {
ggml_set_param(model.fc1_weight);
ggml_set_param(model.fc1_bias);
ggml_set_param(model.fc2_weight);
ggml_set_param(model.fc2_bias);
ggml_tensor * fc1 = ggml_relu(model.ctx_compute, ggml_add(model.ctx_compute,
ggml_mul_mat(model.ctx_compute, model.fc1_weight, model.images),
model.fc1_bias));
model.logits = ggml_add(model.ctx_compute,
ggml_mul_mat(model.ctx_compute, model.fc2_weight, fc1),
model.fc2_bias);
} else if (model.arch == "mnist-cnn") {
ggml_set_param(model.conv1_kernel);
ggml_set_param(model.conv1_bias);
ggml_set_param(model.conv2_kernel);
ggml_set_param(model.conv2_bias);
ggml_set_param(model.dense_weight);
ggml_set_param(model.dense_bias);
struct ggml_tensor * images_2D = ggml_reshape_4d(model.ctx_compute, model.images, MNIST_HW, MNIST_HW, 1, model.images->ne[1]);
struct ggml_tensor * conv1_out = ggml_relu(model.ctx_compute, ggml_add(model.ctx_compute,
ggml_conv_2d(model.ctx_compute, model.conv1_kernel, images_2D, 1, 1, 1, 1, 1, 1),
model.conv1_bias));
GGML_ASSERT(conv1_out->ne[0] == MNIST_HW);
GGML_ASSERT(conv1_out->ne[1] == MNIST_HW);
GGML_ASSERT(conv1_out->ne[2] == MNIST_CNN_NCB);
GGML_ASSERT(conv1_out->ne[3] == model.nbatch_physical);
struct ggml_tensor * conv2_in = ggml_pool_2d(model.ctx_compute, conv1_out, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
GGML_ASSERT(conv2_in->ne[0] == MNIST_HW/2);
GGML_ASSERT(conv2_in->ne[1] == MNIST_HW/2);
GGML_ASSERT(conv2_in->ne[2] == MNIST_CNN_NCB);
GGML_ASSERT(conv2_in->ne[3] == model.nbatch_physical);
struct ggml_tensor * conv2_out = ggml_relu(model.ctx_compute, ggml_add(model.ctx_compute,
ggml_conv_2d(model.ctx_compute, model.conv2_kernel, conv2_in, 1, 1, 1, 1, 1, 1),
model.conv2_bias));
GGML_ASSERT(conv2_out->ne[0] == MNIST_HW/2);
GGML_ASSERT(conv2_out->ne[1] == MNIST_HW/2);
GGML_ASSERT(conv2_out->ne[2] == MNIST_CNN_NCB*2);
GGML_ASSERT(conv2_out->ne[3] == model.nbatch_physical);
struct ggml_tensor * dense_in = ggml_pool_2d(model.ctx_compute, conv2_out, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
GGML_ASSERT(dense_in->ne[0] == MNIST_HW/4);
GGML_ASSERT(dense_in->ne[1] == MNIST_HW/4);
GGML_ASSERT(dense_in->ne[2] == MNIST_CNN_NCB*2);
GGML_ASSERT(dense_in->ne[3] == model.nbatch_physical);
dense_in = ggml_reshape_2d(model.ctx_compute,
ggml_cont(model.ctx_compute, ggml_permute(model.ctx_compute, dense_in, 1, 2, 0, 3)),
(MNIST_HW/4)*(MNIST_HW/4)*(MNIST_CNN_NCB*2), model.nbatch_physical);
GGML_ASSERT(dense_in->ne[0] == (MNIST_HW/4)*(MNIST_HW/4)*(MNIST_CNN_NCB*2));
GGML_ASSERT(dense_in->ne[1] == model.nbatch_physical);
GGML_ASSERT(dense_in->ne[2] == 1);
GGML_ASSERT(dense_in->ne[3] == 1);
model.logits = ggml_add(model.ctx_compute, ggml_mul_mat(model.ctx_compute, model.dense_weight, dense_in), model.dense_bias);
} else {
GGML_ASSERT(false);
}
ggml_set_name(model.logits, "logits");
ggml_set_output(model.logits);
GGML_ASSERT(model.logits->type == GGML_TYPE_F32);
GGML_ASSERT(model.logits->ne[0] == MNIST_NCLASSES);
GGML_ASSERT(model.logits->ne[1] == model.nbatch_physical);
GGML_ASSERT(model.logits->ne[2] == 1);
GGML_ASSERT(model.logits->ne[3] == 1);
}
ggml_opt_result_t mnist_model_eval(mnist_model & model, ggml_opt_dataset_t dataset) {
ggml_opt_result_t result = ggml_opt_result_init();
ggml_opt_params params = ggml_opt_default_params(model.backend_sched, GGML_OPT_LOSS_TYPE_CROSS_ENTROPY);
params.ctx_compute = model.ctx_compute;
params.inputs = model.images;
params.outputs = model.logits;
params.build_type = GGML_OPT_BUILD_TYPE_FORWARD;
ggml_opt_context_t opt_ctx = ggml_opt_init(params);
{
const int64_t t_start_us = ggml_time_us();
ggml_opt_epoch(opt_ctx, dataset, nullptr, result, /*idata_split =*/ 0, nullptr, nullptr);
const int64_t t_total_us = ggml_time_us() - t_start_us;
const double t_total_ms = 1e-3*t_total_us;
const int nex = ggml_opt_dataset_data(dataset)->ne[1];
fprintf(stderr, "%s: model evaluation on %d images took %.2lf ms, %.2lf us/image\n",
__func__, nex, t_total_ms, (double) t_total_us/nex);
}
ggml_opt_free(opt_ctx);
return result;
}
void mnist_model_train(mnist_model & model, ggml_opt_dataset_t dataset, const int nepoch, const float val_split) {
ggml_opt_fit(model.backend_sched, model.ctx_compute, model.images, model.logits, dataset,
GGML_OPT_LOSS_TYPE_CROSS_ENTROPY, GGML_OPT_OPTIMIZER_TYPE_ADAMW, ggml_opt_get_default_optimizer_params, nepoch, model.nbatch_logical, val_split, false);
}
void mnist_model_save(mnist_model & model, const std::string & fname) {
printf("%s: saving model to '%s'\n", __func__, fname.c_str());
struct ggml_context * ggml_ctx;
{
struct ggml_init_params params = {
/*.mem_size =*/ 100 * 1024*1024,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
ggml_ctx = ggml_init(params);
}
gguf_context * gguf_ctx = gguf_init_empty();
gguf_set_val_str(gguf_ctx, "general.architecture", model.arch.c_str());
std::vector<struct ggml_tensor *> weights;
if (model.arch == "mnist-fc") {
weights = {model.fc1_weight, model.fc1_bias, model.fc2_weight, model.fc2_bias};
} else if (model.arch == "mnist-cnn") {
weights = {model.conv1_kernel, model.conv1_bias, model.conv2_kernel, model.conv2_bias, model.dense_weight, model.dense_bias};
} else {
GGML_ASSERT(false);
}
for (struct ggml_tensor * t : weights) {
struct ggml_tensor * copy = ggml_dup_tensor(ggml_ctx, t);
ggml_set_name(copy, t->name);
ggml_backend_tensor_get(t, copy->data, 0, ggml_nbytes(t));
gguf_add_tensor(gguf_ctx, copy);
}
gguf_write_to_file(gguf_ctx, fname.c_str(), false);
ggml_free(ggml_ctx);
gguf_free(gguf_ctx);
}
#ifdef __cplusplus
extern "C" {
#endif
int wasm_eval(uint8_t * digitPtr) {
std::vector<float> digit(digitPtr, digitPtr + MNIST_NINPUT);
ggml_opt_dataset_t dataset = ggml_opt_dataset_init(GGML_TYPE_F32, GGML_TYPE_F32, MNIST_NINPUT, MNIST_NCLASSES, 1, 1);
struct ggml_tensor * data = ggml_opt_dataset_data(dataset);
float * buf = ggml_get_data_f32(data);
for (int i = 0; i < MNIST_NINPUT; ++i) {
buf[i] = digitPtr[i] / 255.0f;
}
ggml_set_zero(ggml_opt_dataset_labels(dataset)); // The labels are not needed.
mnist_model model = mnist_model_init_from_file("mnist-f32.gguf", "CPU", /*nbatch_logical =*/ 1, /*nbatch_physical =*/ 1);
mnist_model_build(model);
ggml_opt_result_t result = mnist_model_eval(model, dataset);
int32_t pred;
ggml_opt_result_pred(result, &pred);
return pred;
}
int wasm_random_digit(char * digitPtr) {
auto fin = std::ifstream("t10k-images-idx3-ubyte", std::ios::binary);
if (!fin) {
fprintf(stderr, "failed to open digits file\n");
return 0;
}
srand(time(NULL));
// Seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
fin.seekg(16 + MNIST_NINPUT * (rand() % MNIST_NTEST));
fin.read(digitPtr, MNIST_NINPUT);
return 1;
}
#ifdef __cplusplus
}
#endif
|