File: main.cpp

package info (click to toggle)
ggml 0.9.6-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,044 kB
  • sloc: cpp: 128,987; ansic: 45,176; lisp: 10,524; python: 1,591; objc: 1,350; sh: 827; makefile: 73
file content (374 lines) | stat: -rw-r--r-- 13,721 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#include "ggml.h"
#include "gguf.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"

#include <algorithm>
#include <cmath>
#include <numeric>
#include <stdexcept>
#include <string>
#include <vector>

static const char * magika_labels[] = {
    "ai",                 "apk",                "appleplist",         "asm",                "asp",
    "batch",              "bmp",                "bzip",               "c",                  "cab",
    "cat",                "chm",                "coff",               "crx",                "cs",
    "css",                "csv",                "deb",                "dex",                "dmg",
    "doc",                "docx",               "elf",                "emf",                "eml",
    "epub",               "flac",               "gif",                "go",                 "gzip",
    "hlp",                "html",               "ico",                "ini",                "internetshortcut",
    "iso",                "jar",                "java",               "javabytecode",       "javascript",
    "jpeg",               "json",               "latex",              "lisp",               "lnk",
    "m3u",                "macho",              "makefile",           "markdown",           "mht",
    "mp3",                "mp4",                "mscompress",         "msi",                "mum",
    "odex",               "odp",                "ods",                "odt",                "ogg",
    "outlook",            "pcap",               "pdf",                "pebin",              "pem",
    "perl",               "php",                "png",                "postscript",         "powershell",
    "ppt",                "pptx",               "python",             "pythonbytecode",     "rar",
    "rdf",                "rpm",                "rst",                "rtf",                "ruby",
    "rust",               "scala",              "sevenzip",           "shell",              "smali",
    "sql",                "squashfs",           "svg",                "swf",                "symlinktext",
    "tar",                "tga",                "tiff",               "torrent",            "ttf",
    "txt",                "unknown",            "vba",                "wav",                "webm",
    "webp",               "winregistry",        "wmf",                "xar",                "xls",
    "xlsb",               "xlsx",               "xml",                "xpi",                "xz",
    "yaml",               "zip",                "zlibstream"
};

struct magika_hparams {
    const int block_size = 4096;
    const int beg_size = 512;
    const int mid_size = 512;
    const int end_size = 512;
    const int min_file_size_for_dl = 16;
    const int n_label = 113;
    const float f_norm_eps = 0.001f;
    const int padding_token = 256;
};

struct magika_model {
    ~magika_model() {
        ggml_backend_buffer_free(buf_w);
        ggml_backend_free(backend);
        ggml_free(ctx_w);
    }

    magika_hparams hparams;

    struct ggml_tensor * dense_w;
    struct ggml_tensor * dense_b;

    struct ggml_tensor * layer_norm_gamma;
    struct ggml_tensor * layer_norm_beta;

    struct ggml_tensor * dense_1_w;
    struct ggml_tensor * dense_1_b;

    struct ggml_tensor * dense_2_w;
    struct ggml_tensor * dense_2_b;

    struct ggml_tensor * layer_norm_1_gamma;
    struct ggml_tensor * layer_norm_1_beta;

    struct ggml_tensor * target_label_w;
    struct ggml_tensor * target_label_b;

    ggml_backend_t backend = ggml_backend_cpu_init();
    ggml_backend_buffer_t buf_w = nullptr;
    struct ggml_context * ctx_w = nullptr;
};

struct ggml_tensor * checked_get_tensor(struct ggml_context * ctx, const char * name) {
    struct ggml_tensor * tensor = ggml_get_tensor(ctx, name);
    if (!tensor) {
        fprintf(stderr, "%s: tensor '%s' not found\n", __func__, name);
        throw std::runtime_error("ggml_get_tensor() failed");
    }
    return tensor;
}

bool magika_model_load(const std::string & fname, magika_model & model) {
    auto & ctx = model.ctx_w;

    struct gguf_init_params params = {
        /*.no_alloc   =*/ true,
        /*.ctx        =*/ &ctx,
    };

    struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params);
    if (!ctx_gguf) {
        fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
        return false;
    }

    model.buf_w = ggml_backend_alloc_ctx_tensors(ctx, model.backend);
    if (!model.buf_w) {
        fprintf(stderr, "%s: ggml_backend_alloc_ctx_tensors() failed\n", __func__);
        gguf_free(ctx_gguf);
        return false;
    }

    try {
        model.dense_w = checked_get_tensor(ctx, "dense/kernel:0");
        model.dense_b = checked_get_tensor(ctx, "dense/bias:0");

        model.layer_norm_gamma = checked_get_tensor(ctx, "layer_normalization/gamma:0");
        model.layer_norm_beta  = checked_get_tensor(ctx, "layer_normalization/beta:0");

        model.dense_1_w = checked_get_tensor(ctx, "dense_1/kernel:0");
        model.dense_1_b = checked_get_tensor(ctx, "dense_1/bias:0");

        model.dense_2_w = checked_get_tensor(ctx, "dense_2/kernel:0");
        model.dense_2_b = checked_get_tensor(ctx, "dense_2/bias:0");

        model.layer_norm_1_gamma = checked_get_tensor(ctx, "layer_normalization_1/gamma:0");
        model.layer_norm_1_beta  = checked_get_tensor(ctx, "layer_normalization_1/beta:0");

        model.target_label_w = checked_get_tensor(ctx, "target_label/kernel:0");
        model.target_label_b = checked_get_tensor(ctx, "target_label/bias:0");
    } catch (const std::exception & e) {
        fprintf(stderr, "%s: %s\n", __func__, e.what());
        gguf_free(ctx_gguf);
        return false;
    }

    FILE * f = fopen(fname.c_str(), "rb");
    if (!f) {
        fprintf(stderr, "%s: fopen() failed\n", __func__);
        gguf_free(ctx_gguf);
        return false;
    }

    const int n_tensors = gguf_get_n_tensors(ctx_gguf);

    for (int i = 0; i < n_tensors; i++) {
        const char * name = gguf_get_tensor_name(ctx_gguf, i);
        struct ggml_tensor * tensor = ggml_get_tensor(ctx, name);
        size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i);

        //printf("%-30s: [%3ld, %3ld, %3ld, %3ld] %s\n",
        //    name,
        //    tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3],
        //    ggml_type_name(tensor->type));

        std::vector<uint8_t> buf(ggml_nbytes(tensor));
        if (fseek(f, offs, SEEK_SET) != 0) {
            fprintf(stderr, "%s: fseek() failed\n", __func__);
            gguf_free(ctx_gguf);
            fclose(f);
            return false;
        }

        if (fread(buf.data(), 1, buf.size(), f) != buf.size()) {
            fprintf(stderr, "%s: fread() failed\n", __func__);
            gguf_free(ctx_gguf);
            fclose(f);
            return false;
        }

        ggml_backend_tensor_set(tensor, buf.data(), 0, buf.size());
    }

    fclose(f);

    gguf_free(ctx_gguf);

    return true;
}

struct ggml_cgraph * magika_graph(
    const magika_model & model,
    const int n_files) {

    const auto & hparams = model.hparams;

    static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
    static std::vector<uint8_t> buf(buf_size);

    struct ggml_init_params params = {
        /*.mem_size   =*/ buf_size,
        /*.mem_buffer =*/ buf.data(),
        /*.no_alloc   =*/ true,
    };

    struct ggml_context * ctx = ggml_init(params);

    struct ggml_cgraph * gf = ggml_new_graph(ctx);

    struct ggml_tensor * input = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 257, 1536, n_files); // one-hot
    ggml_set_name(input, "input");
    ggml_set_input(input);

    struct ggml_tensor * cur;

    // dense
    cur = ggml_mul_mat(ctx, model.dense_w, input);
    cur = ggml_add(ctx, cur, model.dense_b); // [128, 1536, n_files]
    cur = ggml_gelu(ctx, cur);

    // reshape
    cur = ggml_reshape_3d(ctx, cur, 512, 384, n_files); // [384, 512, n_files]
    cur = ggml_cont(ctx, ggml_transpose(ctx, cur));

    // layer normalization
    cur = ggml_norm(ctx, cur, hparams.f_norm_eps);
    cur = ggml_mul(ctx, cur, model.layer_norm_gamma); // [384, 512, n_files]
    cur = ggml_add(ctx, cur, model.layer_norm_beta);  // [384, 512, n_files]

    // dense_1
    cur = ggml_cont(ctx, ggml_transpose(ctx, cur));
    cur = ggml_mul_mat(ctx, model.dense_1_w, cur);
    cur = ggml_add(ctx, cur, model.dense_1_b); // [256, 384, n_files]
    cur = ggml_gelu(ctx, cur);

    // dense_2
    cur = ggml_mul_mat(ctx, model.dense_2_w, cur);
    cur = ggml_add(ctx, cur, model.dense_2_b); // [256, 384, n_files]
    cur = ggml_gelu(ctx, cur);

    // global_max_pooling1d
    cur = ggml_cont(ctx, ggml_transpose(ctx, cur)); // [384, 256, n_files]
    cur = ggml_pool_1d(ctx, cur, GGML_OP_POOL_MAX, 384, 384, 0); // [1, 256, n_files]
    cur = ggml_reshape_2d(ctx, cur, 256, n_files); // [256, n_files]

    // layer normalization 1
    cur = ggml_norm(ctx, cur, hparams.f_norm_eps);
    cur = ggml_mul(ctx, cur, model.layer_norm_1_gamma); // [256, n_files]
    cur = ggml_add(ctx, cur, model.layer_norm_1_beta);  // [256, n_files]

    // target_label
    cur = ggml_mul_mat(ctx, model.target_label_w, cur);
    cur = ggml_add(ctx, cur, model.target_label_b); // [n_label, n_files]
    cur = ggml_soft_max(ctx, cur); // [n_label, n_files]
    ggml_set_name(cur, "target_label_probs");
    ggml_set_output(cur);

    ggml_build_forward_expand(gf, cur);

    return gf;
}

bool magika_eval(
    struct magika_model & model,
    const std::vector<std::string> & fnames) {

    const auto & hparams = model.hparams;

    static ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));

    struct ggml_cgraph * gf = magika_graph(model, fnames.size());

    if (!ggml_gallocr_alloc_graph(alloc, gf)) {
        fprintf(stderr, "%s: ggml_gallocr_alloc_graph() failed\n", __func__);
        return false;
    }

    struct ggml_tensor * input = ggml_graph_get_tensor(gf, "input");

    for (size_t i = 0; i < fnames.size(); i++) {
        FILE * f = fopen(fnames[i].c_str(), "rb");
        if (!f) {
            fprintf(stderr, "%s: fopen() failed\n", __func__);
            return false;
        }
        fseek(f, 0, SEEK_END);
        long fsize = ftell(f);

        // the buffer is padded with the padding_token if the file is smaller than the block size
        std::vector<int> buf(1536, hparams.padding_token);
        std::vector<uint8_t> read_buf(std::max(hparams.beg_size, std::max(hparams.mid_size, hparams.end_size)));

        // read beg
        fseek(f, 0, SEEK_SET);
        int n_read = fread(read_buf.data(), 1, hparams.beg_size, f);
        for (int j = 0; j < n_read; j++) {
            // pad at the end
            buf[j] = read_buf[j];
        }

        // read mid
        long mid_offs = std::max(0L, (fsize - hparams.mid_size) / 2);
        fseek(f, mid_offs, SEEK_SET);
        n_read = fread(read_buf.data(), 1, hparams.mid_size, f);
        for (int j = 0; j < n_read; j++) {
            // pad at both ends
            long mid_idx = hparams.beg_size + (hparams.mid_size / 2) - n_read / 2 + j;
            buf[mid_idx] = read_buf[j];
        }

        // read end
        long end_offs = std::max(0L, fsize - hparams.end_size);
        fseek(f, end_offs, SEEK_SET);
        n_read = fread(read_buf.data(), 1, hparams.end_size, f);
        for (int j = 0; j < n_read; j++) {
            // pad at the beginning
            int end_idx = hparams.beg_size + hparams.mid_size + hparams.end_size - n_read + j;
            buf[end_idx] = read_buf[j];
        }

        fclose(f);

        const size_t inp_bytes = hparams.beg_size + hparams.mid_size + hparams.end_size;

        // convert to one-hot
        std::vector<float> one_hot(257*inp_bytes);
        for (size_t j = 0; j < inp_bytes; j++) {
            one_hot[257*j + buf[j]] = 1.0f;
        }

        ggml_backend_tensor_set(input, one_hot.data(), 257*inp_bytes*i*sizeof(float), 257*inp_bytes*sizeof(float));
    }

    if (ggml_backend_graph_compute(model.backend, gf) != GGML_STATUS_SUCCESS) {
        fprintf(stderr, "%s: ggml_backend_graph_compute() failed\n", __func__);
        return false;
    }

    struct ggml_tensor * target_label_probs = ggml_graph_get_tensor(gf, "target_label_probs");

    // print probabilities for the top labels of each file
    for (size_t i = 0; i < fnames.size(); i++) {
        std::vector<float> probs(hparams.n_label);
        ggml_backend_tensor_get(target_label_probs, probs.data(), hparams.n_label*i*sizeof(float), hparams.n_label*sizeof(float));

        // sort the probabilities
        std::vector<int> idx(hparams.n_label);
        std::iota(idx.begin(), idx.end(), 0);
        std::sort(idx.begin(), idx.end(), [&probs](int i1, int i2) { return probs[i1] > probs[i2]; });

        // print the top labels
        const int top_n = 5;
        printf("%-30s: ", fnames[i].c_str());
        for (int j = 0; j < top_n; j++) {
            printf("%s (%.2f%%) ", magika_labels[idx[j]], probs[idx[j]]*100);
        }
        printf("\n");
    }

    return true;
}

int main(int argc, const char ** argv) {
    if (argc < 3) {
        fprintf(stderr, "usage: %s <model> <file1> [<file2> ...]\n", argv[0]);
        return 1;
    }

    const char * model_fname = argv[1];
    std::vector<std::string> fnames;
    for (int i = 2; i < argc; i++) {
        fnames.push_back(argv[i]);
    }

    magika_model model;
    if (!magika_model_load(model_fname, model)) {
        fprintf(stderr, "magika_model_load() failed\n");
        return 1;
    }

    magika_eval(model, fnames);

    return 0;
}