File: test-customop.c

package info (click to toggle)
ggml 0.9.6-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 20,044 kB
  • sloc: cpp: 128,987; ansic: 45,176; lisp: 10,524; python: 1,591; objc: 1,350; sh: 827; makefile: 73
file content (300 lines) | stat: -rw-r--r-- 9,908 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include "ggml.h"
#include "ggml-cpu.h"

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#if defined(_WIN32)
#include <windows.h>
typedef volatile LONG atomic_int;
static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
    return InterlockedExchangeAdd(ptr, inc);
}
#else
#include <stdatomic.h>
#endif

#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))

struct ggml_context * make_ctx(void) {
    struct ggml_init_params params = {
        /*.mem_size   =*/ 1 * 1024 * 1024,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ false,
    };

    return ggml_init(params);
}

char g_userdata[] = "ggml";
atomic_int g_custom1_count = 0;
atomic_int g_custom2_count = 0;
atomic_int g_custom3_count = 0;

void custom1(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata) {
    // check that the userdata is correct
    GGML_ASSERT(userdata == NULL);
    GGML_ASSERT(ggml_are_same_shape(dst, a));

    atomic_fetch_add(&g_custom1_count, 1);

    const float * a_data = ggml_get_data_f32(a);
    float * dst_data = ggml_get_data_f32(dst);

    // this assumes that the tensors are contiguous
    GGML_ASSERT(ggml_is_contiguous(dst));
    GGML_ASSERT(ggml_is_contiguous(a));

    // parallelize by elements
    const int ne = (int)ggml_nelements(dst);
    const int dr = (ne + nth - 1) / nth;
    const int ie0 = dr * ith;
    const int ie1 = MIN(ie0 + dr, ne);

    for (int i = ie0; i < ie1; ++i) {
        dst_data[i] = a_data[i] * 2;
    }
}

void custom2(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata) {
    // check that the userdata is correct
    GGML_ASSERT(userdata == g_userdata);
    GGML_ASSERT(strcmp(userdata, "ggml") == 0);
    GGML_ASSERT(ggml_are_same_shape(dst, a));
    GGML_ASSERT(ggml_are_same_shape(dst, b));

    atomic_fetch_add(&g_custom2_count, 1);

    const float * a_data = ggml_get_data_f32(a);
    const float * b_data = ggml_get_data_f32(b);
    float * dst_data = ggml_get_data_f32(dst);

    // parallelize by rows
    const int nr = (int)ggml_nrows(dst);
    // number of rows per thread
    const int dr = (nr + nth - 1) / nth;
    // row range for this thread
    const int ir0 = dr * ith;
    const int ir1 = MIN(ir0 + dr, nr);

    // number of columns
    const int nc = (int)dst->ne[0];

    // this assumes that the tensors are contiguous
    GGML_ASSERT(ggml_is_contiguous(dst));
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(ggml_is_contiguous(b));

    for (int ir = ir0; ir < ir1; ++ir) {
        for (int ic = 0; ic < nc; ++ic) {
            const int i = ir * nc + ic;
            dst_data[i] = a_data[i] + b_data[i];
        }
    }
}

void custom3(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata) {
    // check that the userdata is correct
    GGML_ASSERT(userdata == g_userdata);
    GGML_ASSERT(strcmp(userdata, "ggml") == 0);
    GGML_ASSERT(ggml_are_same_shape(dst, a));
    GGML_ASSERT(ggml_are_same_shape(dst, b));
    GGML_ASSERT(ggml_are_same_shape(dst, c));

    atomic_fetch_add(&g_custom3_count, 1);

    const float * a_data = ggml_get_data_f32(a);
    const float * b_data = ggml_get_data_f32(b);
    const float * c_data = ggml_get_data_f32(c);
    float * dst_data = ggml_get_data_f32(dst);

    // dont parallelize
    GGML_ASSERT(ith == 0);

    // number of elements
    const int ne = (int)ggml_nelements(dst);

    // this assumes that the tensors are contiguous
    GGML_ASSERT(ggml_is_contiguous(dst));
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(ggml_is_contiguous(b));
    GGML_ASSERT(ggml_is_contiguous(c));

    for (int i = 0; i < ne; ++i) {
        dst_data[i] = a_data[i] + b_data[i] + c_data[i];
    }
}

void custom(struct ggml_tensor * dst, int ith, int nth, void * userdata) {
    struct ggml_tensor * src0 = dst->src[0];
    struct ggml_tensor * src1 = dst->src[1];
    struct ggml_tensor * src2 = dst->src[2];
    struct ggml_tensor * src3 = dst->src[3];
    struct ggml_tensor * src4 = dst->src[4];

    int32_t * dst_data = (int32_t *) ggml_get_data(dst);
    const float * src0_data = ggml_get_data_f32(src0);
    const float * src1_data = ggml_get_data_f32(src1);
    const float * src2_data = ggml_get_data_f32(src2);
    const float * src3_data = ggml_get_data_f32(src3);
    const float * src4_data = ggml_get_data_f32(src4);

    // check that the userdata is correct
    GGML_ASSERT(userdata == g_userdata);
    GGML_ASSERT(strcmp(userdata, "ggml") == 0);

    // check that the tensors are contiguous
    GGML_ASSERT(ggml_is_contiguous(dst));
    GGML_ASSERT(ggml_is_contiguous(src0));
    GGML_ASSERT(ggml_is_contiguous(src1));
    GGML_ASSERT(ggml_is_contiguous(src2));
    GGML_ASSERT(ggml_is_contiguous(src3));
    GGML_ASSERT(ggml_is_contiguous(src4));

    // check that the shapes are the same
    GGML_ASSERT(ggml_are_same_shape(dst, src0));
    GGML_ASSERT(ggml_are_same_shape(dst, src1));
    GGML_ASSERT(ggml_are_same_shape(dst, src2));
    GGML_ASSERT(ggml_are_same_shape(dst, src3));
    GGML_ASSERT(ggml_are_same_shape(dst, src4));


    for (int i = ith; i < ggml_nelements(dst); i += nth) {
        dst_data[i] = src0_data[i] + src1_data[i] * src2_data[i] - src3_data[i] * src4_data[i];
    }
}

int main(int argc, const char** argv) {

    float buf1_f32[1024];
    for (int i = 0; i < 1024; ++i) {
        buf1_f32[i] = (float)(i + 1);
    }
    float buf2_f32[1024];
    for (int i = 0; i < 1024; ++i) {
        buf2_f32[i] = (float)(i + 1) * 2;
    }
    float buf3_f32[1024];
    for (int i = 0; i < 1024; ++i) {
        buf3_f32[i] = (float)(i + 1) * 3;
    }

    // map_custom1
    // 2 tasks, no userdata, parallelized by elements
    {
        struct ggml_context * ctx = make_ctx();
        struct ggml_tensor * t = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        memcpy(t->data, buf1_f32, ggml_nbytes(t));

        struct ggml_tensor * m1 = ggml_map_custom1(ctx, t, custom1, 2, NULL);

        struct ggml_cgraph * graph = ggml_new_graph(ctx);
        ggml_build_forward_expand(graph, m1);

        ggml_graph_compute_with_ctx(ctx, graph, 4);

        const float * output = ggml_get_data_f32(m1);

        for (int i = 0; i < ggml_nelements(m1); ++i) {
            GGML_ASSERT(output[i] == buf1_f32[i] * 2);
        }
        GGML_ASSERT(g_custom1_count == 2);

        ggml_free(ctx);
    }

    // map_custom2
    // max tasks (4), userdata, parallelized by rows
    {
        struct ggml_context * ctx = make_ctx();
        struct ggml_tensor * t1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        memcpy(t1->data, buf1_f32, ggml_nbytes(t1));
        memcpy(t2->data, buf2_f32, ggml_nbytes(t2));

        struct ggml_tensor * m2 = ggml_map_custom2(ctx, t1, t2, custom2, GGML_N_TASKS_MAX, g_userdata);

        struct ggml_cgraph * graph = ggml_new_graph(ctx);
        ggml_build_forward_expand(graph, m2);

        ggml_graph_compute_with_ctx(ctx, graph, 4);

        const float * output = ggml_get_data_f32(m2);

        for (int i = 0; i < ggml_nelements(m2); ++i) {
            GGML_ASSERT(output[i] == buf1_f32[i] + buf2_f32[i]);
        }

        GGML_ASSERT(g_custom2_count == 4);

        ggml_free(ctx);
    }

    // map_custom3
    // 1 task, userdata, not parallelized
    {
        struct ggml_context * ctx = make_ctx();
        struct ggml_tensor * t1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        struct ggml_tensor * t3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);

        memcpy(t1->data, buf1_f32, ggml_nbytes(t1));
        memcpy(t2->data, buf2_f32, ggml_nbytes(t2));
        memcpy(t3->data, buf3_f32, ggml_nbytes(t3));

        struct ggml_tensor * m3 = ggml_map_custom3(ctx, t1, t2, t3, custom3, 1, g_userdata);

        struct ggml_cgraph * graph = ggml_new_graph(ctx);
        ggml_build_forward_expand(graph, m3);

        ggml_graph_compute_with_ctx(ctx, graph, 4);

        const float * output = ggml_get_data_f32(m3);

        for (int i = 0; i < ggml_nelements(m3); ++i) {
            GGML_ASSERT(output[i] == buf1_f32[i] + buf2_f32[i] + buf3_f32[i]);
        }

        GGML_ASSERT(g_custom3_count == 1);

        ggml_free(ctx);
    }

    // custom
    {
        struct ggml_context * ctx = make_ctx();
        struct ggml_tensor * t1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        struct ggml_tensor * t3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        struct ggml_tensor * t4 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        struct ggml_tensor * t5 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
        memcpy(t1->data, buf1_f32, ggml_nbytes(t1));
        memcpy(t2->data, buf2_f32, ggml_nbytes(t2));
        memcpy(t3->data, buf3_f32, ggml_nbytes(t3));
        memcpy(t4->data, buf1_f32, ggml_nbytes(t4));
        memcpy(t5->data, buf2_f32, ggml_nbytes(t5));

        struct ggml_tensor * args[] = {
            t1, t2, t3, t4, t5,
        };

        struct ggml_tensor * m4 = ggml_custom_4d(ctx, GGML_TYPE_I32, 10, 2, 1, 1, args, sizeof(args)/sizeof(args[0]), custom, GGML_N_TASKS_MAX, g_userdata);

        struct ggml_cgraph * graph = ggml_new_graph(ctx);
        ggml_build_forward_expand(graph, m4);

        ggml_graph_compute_with_ctx(ctx, graph, 4);

        const int32_t * output = (const int32_t *) ggml_get_data(m4);

        for (int i = 0; i < ggml_nelements(m4); ++i) {
            GGML_ASSERT(output[i] == buf1_f32[i] + buf2_f32[i] * buf3_f32[i] - buf1_f32[i] * buf2_f32[i]);
        }

        ggml_free(ctx);
    }

    return 0;
}