1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
|
{-# OPTIONS -fno-implicit-prelude -#include "HsBase.h" #-}
#undef DEBUG_DUMP
-----------------------------------------------------------------------------
-- |
-- Module : GHC.IO
-- Copyright : (c) The University of Glasgow, 1992-2001
-- License : see libraries/base/LICENSE
--
-- Maintainer : libraries@haskell.org
-- Stability : internal
-- Portability : non-portable
--
-- String I\/O functions
--
-----------------------------------------------------------------------------
module GHC.IO (
hWaitForInput, hGetChar, hGetLine, hGetContents, hPutChar, hPutStr,
commitBuffer', -- hack, see below
hGetcBuffered, -- needed by ghc/compiler/utils/StringBuffer.lhs
hGetBuf, hGetBufNonBlocking, hPutBuf, hPutBufNonBlocking, slurpFile,
memcpy_ba_baoff,
memcpy_ptr_baoff,
memcpy_baoff_ba,
memcpy_baoff_ptr,
) where
#include "config.h"
import Foreign
import Foreign.C
import System.IO.Error
import Data.Maybe
import Control.Monad
import System.Posix.Internals
import GHC.Enum
import GHC.Base
import GHC.IOBase
import GHC.Handle -- much of the real stuff is in here
import GHC.Real
import GHC.Num
import GHC.Show
import GHC.List
import GHC.Exception ( ioError, catch )
#ifdef mingw32_TARGET_OS
import GHC.Conc
#endif
-- ---------------------------------------------------------------------------
-- Simple input operations
-- If hWaitForInput finds anything in the Handle's buffer, it
-- immediately returns. If not, it tries to read from the underlying
-- OS handle. Notice that for buffered Handles connected to terminals
-- this means waiting until a complete line is available.
-- | Computation 'hWaitForInput' @hdl t@
-- waits until input is available on handle @hdl@.
-- It returns 'True' as soon as input is available on @hdl@,
-- or 'False' if no input is available within @t@ milliseconds.
--
-- If @t@ is less than zero, then @hWaitForInput@ waits indefinitely.
-- NOTE: in the current implementation, this is the only case that works
-- correctly (if @t@ is non-zero, then all other concurrent threads are
-- blocked until data is available).
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file has been reached.
hWaitForInput :: Handle -> Int -> IO Bool
hWaitForInput h msecs = do
wantReadableHandle "hWaitForInput" h $ \ handle_ -> do
let ref = haBuffer handle_
buf <- readIORef ref
if not (bufferEmpty buf)
then return True
else do
if msecs < 0
then do buf' <- fillReadBuffer (haFD handle_) True
(haIsStream handle_) buf
writeIORef ref buf'
return True
else do r <- throwErrnoIfMinus1Retry "hWaitForInput" $
inputReady (fromIntegral (haFD handle_))
(fromIntegral msecs) (haIsStream handle_)
return (r /= 0)
foreign import ccall unsafe "inputReady"
inputReady :: CInt -> CInt -> Bool -> IO CInt
-- ---------------------------------------------------------------------------
-- hGetChar
-- | Computation 'hGetChar' @hdl@ reads a character from the file or
-- channel managed by @hdl@, blocking until a character is available.
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file has been reached.
hGetChar :: Handle -> IO Char
hGetChar handle =
wantReadableHandle "hGetChar" handle $ \handle_ -> do
let fd = haFD handle_
ref = haBuffer handle_
buf <- readIORef ref
if not (bufferEmpty buf)
then hGetcBuffered fd ref buf
else do
-- buffer is empty.
case haBufferMode handle_ of
LineBuffering -> do
new_buf <- fillReadBuffer fd True (haIsStream handle_) buf
hGetcBuffered fd ref new_buf
BlockBuffering _ -> do
new_buf <- fillReadBuffer fd True (haIsStream handle_) buf
-- ^^^^
-- don't wait for a completely full buffer.
hGetcBuffered fd ref new_buf
NoBuffering -> do
-- make use of the minimal buffer we already have
let raw = bufBuf buf
r <- readRawBuffer "hGetChar" (fromIntegral fd) (haIsStream handle_) raw 0 1
if r == 0
then ioe_EOF
else do (c,_) <- readCharFromBuffer raw 0
return c
hGetcBuffered fd ref buf@Buffer{ bufBuf=b, bufRPtr=r, bufWPtr=w }
= do (c,r) <- readCharFromBuffer b r
let new_buf | r == w = buf{ bufRPtr=0, bufWPtr=0 }
| otherwise = buf{ bufRPtr=r }
writeIORef ref new_buf
return c
-- ---------------------------------------------------------------------------
-- hGetLine
-- ToDo: the unbuffered case is wrong: it doesn't lock the handle for
-- the duration.
-- | Computation 'hGetLine' @hdl@ reads a line from the file or
-- channel managed by @hdl@.
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file is encountered when reading
-- the /first/ character of the line.
--
-- If 'hGetLine' encounters end-of-file at any other point while reading
-- in a line, it is treated as a line terminator and the (partial)
-- line is returned.
hGetLine :: Handle -> IO String
hGetLine h = do
m <- wantReadableHandle "hGetLine" h $ \ handle_ -> do
case haBufferMode handle_ of
NoBuffering -> return Nothing
LineBuffering -> do
l <- hGetLineBuffered handle_
return (Just l)
BlockBuffering _ -> do
l <- hGetLineBuffered handle_
return (Just l)
case m of
Nothing -> hGetLineUnBuffered h
Just l -> return l
hGetLineBuffered handle_ = do
let ref = haBuffer handle_
buf <- readIORef ref
hGetLineBufferedLoop handle_ ref buf []
hGetLineBufferedLoop handle_ ref
buf@Buffer{ bufRPtr=r, bufWPtr=w, bufBuf=raw } xss =
let
-- find the end-of-line character, if there is one
loop raw r
| r == w = return (False, w)
| otherwise = do
(c,r') <- readCharFromBuffer raw r
if c == '\n'
then return (True, r) -- NB. not r': don't include the '\n'
else loop raw r'
in do
(eol, off) <- loop raw r
#ifdef DEBUG_DUMP
puts ("hGetLineBufferedLoop: r=" ++ show r ++ ", w=" ++ show w ++ ", off=" ++ show off ++ "\n")
#endif
xs <- unpack raw r off
-- if eol == True, then off is the offset of the '\n'
-- otherwise off == w and the buffer is now empty.
if eol
then do if (w == off + 1)
then writeIORef ref buf{ bufRPtr=0, bufWPtr=0 }
else writeIORef ref buf{ bufRPtr = off + 1 }
return (concat (reverse (xs:xss)))
else do
maybe_buf <- maybeFillReadBuffer (haFD handle_) True (haIsStream handle_)
buf{ bufWPtr=0, bufRPtr=0 }
case maybe_buf of
-- Nothing indicates we caught an EOF, and we may have a
-- partial line to return.
Nothing -> do
writeIORef ref buf{ bufRPtr=0, bufWPtr=0 }
let str = concat (reverse (xs:xss))
if not (null str)
then return str
else ioe_EOF
Just new_buf ->
hGetLineBufferedLoop handle_ ref new_buf (xs:xss)
maybeFillReadBuffer fd is_line is_stream buf
= catch
(do buf <- fillReadBuffer fd is_line is_stream buf
return (Just buf)
)
(\e -> do if isEOFError e
then return Nothing
else ioError e)
unpack :: RawBuffer -> Int -> Int -> IO [Char]
unpack buf r 0 = return ""
unpack buf (I# r) (I# len) = IO $ \s -> unpack [] (len -# 1#) s
where
unpack acc i s
| i <# r = (# s, acc #)
| otherwise =
case readCharArray# buf i s of
(# s, ch #) -> unpack (C# ch : acc) (i -# 1#) s
hGetLineUnBuffered :: Handle -> IO String
hGetLineUnBuffered h = do
c <- hGetChar h
if c == '\n' then
return ""
else do
l <- getRest
return (c:l)
where
getRest = do
c <-
catch
(hGetChar h)
(\ err -> do
if isEOFError err then
return '\n'
else
ioError err)
if c == '\n' then
return ""
else do
s <- getRest
return (c:s)
-- -----------------------------------------------------------------------------
-- hGetContents
-- hGetContents on a DuplexHandle only affects the read side: you can
-- carry on writing to it afterwards.
-- | Computation 'hGetContents' @hdl@ returns the list of characters
-- corresponding to the unread portion of the channel or file managed
-- by @hdl@, which is put into an intermediate state, /semi-closed/.
-- In this state, @hdl@ is effectively closed,
-- but items are read from @hdl@ on demand and accumulated in a special
-- list returned by 'hGetContents' @hdl@.
--
-- Any operation that fails because a handle is closed,
-- also fails if a handle is semi-closed. The only exception is 'hClose'.
-- A semi-closed handle becomes closed:
--
-- * if 'hClose' is applied to it;
--
-- * if an I\/O error occurs when reading an item from the handle;
--
-- * or once the entire contents of the handle has been read.
--
-- Once a semi-closed handle becomes closed, the contents of the
-- associated list becomes fixed. The contents of this final list is
-- only partially specified: it will contain at least all the items of
-- the stream that were evaluated prior to the handle becoming closed.
--
-- Any I\/O errors encountered while a handle is semi-closed are simply
-- discarded.
--
-- This operation may fail with:
--
-- * 'isEOFError' if the end of file has been reached.
hGetContents :: Handle -> IO String
hGetContents handle =
withHandle "hGetContents" handle $ \handle_ ->
case haType handle_ of
ClosedHandle -> ioe_closedHandle
SemiClosedHandle -> ioe_closedHandle
AppendHandle -> ioe_notReadable
WriteHandle -> ioe_notReadable
_ -> do xs <- lazyRead handle
return (handle_{ haType=SemiClosedHandle}, xs )
-- Note that someone may close the semi-closed handle (or change its
-- buffering), so each time these lazy read functions are pulled on,
-- they have to check whether the handle has indeed been closed.
lazyRead :: Handle -> IO String
lazyRead handle =
unsafeInterleaveIO $
withHandle "lazyRead" handle $ \ handle_ -> do
case haType handle_ of
ClosedHandle -> return (handle_, "")
SemiClosedHandle -> lazyRead' handle handle_
_ -> ioException
(IOError (Just handle) IllegalOperation "lazyRead"
"illegal handle type" Nothing)
lazyRead' h handle_ = do
let ref = haBuffer handle_
fd = haFD handle_
-- even a NoBuffering handle can have a char in the buffer...
-- (see hLookAhead)
buf <- readIORef ref
if not (bufferEmpty buf)
then lazyReadHaveBuffer h handle_ fd ref buf
else do
case haBufferMode handle_ of
NoBuffering -> do
-- make use of the minimal buffer we already have
let raw = bufBuf buf
r <- readRawBuffer "lazyRead" (fromIntegral fd) (haIsStream handle_) raw 0 1
if r == 0
then do handle_ <- hClose_help handle_
return (handle_, "")
else do (c,_) <- readCharFromBuffer raw 0
rest <- lazyRead h
return (handle_, c : rest)
LineBuffering -> lazyReadBuffered h handle_ fd ref buf
BlockBuffering _ -> lazyReadBuffered h handle_ fd ref buf
-- we never want to block during the read, so we call fillReadBuffer with
-- is_line==True, which tells it to "just read what there is".
lazyReadBuffered h handle_ fd ref buf = do
catch
(do buf <- fillReadBuffer fd True{-is_line-} (haIsStream handle_) buf
lazyReadHaveBuffer h handle_ fd ref buf
)
-- all I/O errors are discarded. Additionally, we close the handle.
(\e -> do handle_ <- hClose_help handle_
return (handle_, "")
)
lazyReadHaveBuffer h handle_ fd ref buf = do
more <- lazyRead h
writeIORef ref buf{ bufRPtr=0, bufWPtr=0 }
s <- unpackAcc (bufBuf buf) (bufRPtr buf) (bufWPtr buf) more
return (handle_, s)
unpackAcc :: RawBuffer -> Int -> Int -> [Char] -> IO [Char]
unpackAcc buf r 0 acc = return acc
unpackAcc buf (I# r) (I# len) acc = IO $ \s -> unpack acc (len -# 1#) s
where
unpack acc i s
| i <# r = (# s, acc #)
| otherwise =
case readCharArray# buf i s of
(# s, ch #) -> unpack (C# ch : acc) (i -# 1#) s
-- ---------------------------------------------------------------------------
-- hPutChar
-- | Computation 'hPutChar' @hdl ch@ writes the character @ch@ to the
-- file or channel managed by @hdl@. Characters may be buffered if
-- buffering is enabled for @hdl@.
--
-- This operation may fail with:
--
-- * 'isFullError' if the device is full; or
--
-- * 'isPermissionError' if another system resource limit would be exceeded.
hPutChar :: Handle -> Char -> IO ()
hPutChar handle c =
c `seq` do -- must evaluate c before grabbing the handle lock
wantWritableHandle "hPutChar" handle $ \ handle_ -> do
let fd = haFD handle_
case haBufferMode handle_ of
LineBuffering -> hPutcBuffered handle_ True c
BlockBuffering _ -> hPutcBuffered handle_ False c
NoBuffering ->
with (castCharToCChar c) $ \buf -> do
writeRawBufferPtr "hPutChar" (fromIntegral fd) (haIsStream handle_) buf 0 1
return ()
hPutcBuffered handle_ is_line c = do
let ref = haBuffer handle_
buf <- readIORef ref
let w = bufWPtr buf
w' <- writeCharIntoBuffer (bufBuf buf) w c
let new_buf = buf{ bufWPtr = w' }
if bufferFull new_buf || is_line && c == '\n'
then do
flushed_buf <- flushWriteBuffer (haFD handle_) (haIsStream handle_) new_buf
writeIORef ref flushed_buf
else do
writeIORef ref new_buf
hPutChars :: Handle -> [Char] -> IO ()
hPutChars handle [] = return ()
hPutChars handle (c:cs) = hPutChar handle c >> hPutChars handle cs
-- ---------------------------------------------------------------------------
-- hPutStr
-- We go to some trouble to avoid keeping the handle locked while we're
-- evaluating the string argument to hPutStr, in case doing so triggers another
-- I/O operation on the same handle which would lead to deadlock. The classic
-- case is
--
-- putStr (trace "hello" "world")
--
-- so the basic scheme is this:
--
-- * copy the string into a fresh buffer,
-- * "commit" the buffer to the handle.
--
-- Committing may involve simply copying the contents of the new
-- buffer into the handle's buffer, flushing one or both buffers, or
-- maybe just swapping the buffers over (if the handle's buffer was
-- empty). See commitBuffer below.
-- | Computation 'hPutStr' @hdl s@ writes the string
-- @s@ to the file or channel managed by @hdl@.
--
-- This operation may fail with:
--
-- * 'isFullError' if the device is full; or
--
-- * 'isPermissionError' if another system resource limit would be exceeded.
hPutStr :: Handle -> String -> IO ()
hPutStr handle str = do
buffer_mode <- wantWritableHandle "hPutStr" handle
(\ handle_ -> do getSpareBuffer handle_)
case buffer_mode of
(NoBuffering, _) -> do
hPutChars handle str -- v. slow, but we don't care
(LineBuffering, buf) -> do
writeLines handle buf str
(BlockBuffering _, buf) -> do
writeBlocks handle buf str
getSpareBuffer :: Handle__ -> IO (BufferMode, Buffer)
getSpareBuffer Handle__{haBuffer=ref,
haBuffers=spare_ref,
haBufferMode=mode}
= do
case mode of
NoBuffering -> return (mode, error "no buffer!")
_ -> do
bufs <- readIORef spare_ref
buf <- readIORef ref
case bufs of
BufferListCons b rest -> do
writeIORef spare_ref rest
return ( mode, newEmptyBuffer b WriteBuffer (bufSize buf))
BufferListNil -> do
new_buf <- allocateBuffer (bufSize buf) WriteBuffer
return (mode, new_buf)
writeLines :: Handle -> Buffer -> String -> IO ()
writeLines hdl Buffer{ bufBuf=raw, bufSize=len } s =
let
shoveString :: Int -> [Char] -> IO ()
-- check n == len first, to ensure that shoveString is strict in n.
shoveString n cs | n == len = do
new_buf <- commitBuffer hdl raw len n True{-needs flush-} False
writeLines hdl new_buf cs
shoveString n [] = do
commitBuffer hdl raw len n False{-no flush-} True{-release-}
return ()
shoveString n (c:cs) = do
n' <- writeCharIntoBuffer raw n c
if (c == '\n')
then do
new_buf <- commitBuffer hdl raw len n' True{-needs flush-} False
writeLines hdl new_buf cs
else
shoveString n' cs
in
shoveString 0 s
writeBlocks :: Handle -> Buffer -> String -> IO ()
writeBlocks hdl Buffer{ bufBuf=raw, bufSize=len } s =
let
shoveString :: Int -> [Char] -> IO ()
-- check n == len first, to ensure that shoveString is strict in n.
shoveString n cs | n == len = do
new_buf <- commitBuffer hdl raw len n True{-needs flush-} False
writeBlocks hdl new_buf cs
shoveString n [] = do
commitBuffer hdl raw len n False{-no flush-} True{-release-}
return ()
shoveString n (c:cs) = do
n' <- writeCharIntoBuffer raw n c
shoveString n' cs
in
shoveString 0 s
-- -----------------------------------------------------------------------------
-- commitBuffer handle buf sz count flush release
--
-- Write the contents of the buffer 'buf' ('sz' bytes long, containing
-- 'count' bytes of data) to handle (handle must be block or line buffered).
--
-- Implementation:
--
-- for block/line buffering,
-- 1. If there isn't room in the handle buffer, flush the handle
-- buffer.
--
-- 2. If the handle buffer is empty,
-- if flush,
-- then write buf directly to the device.
-- else swap the handle buffer with buf.
--
-- 3. If the handle buffer is non-empty, copy buf into the
-- handle buffer. Then, if flush != 0, flush
-- the buffer.
commitBuffer
:: Handle -- handle to commit to
-> RawBuffer -> Int -- address and size (in bytes) of buffer
-> Int -- number of bytes of data in buffer
-> Bool -- True <=> flush the handle afterward
-> Bool -- release the buffer?
-> IO Buffer
commitBuffer hdl raw sz@(I# _) count@(I# _) flush release = do
wantWritableHandle "commitAndReleaseBuffer" hdl $
commitBuffer' raw sz count flush release
-- Explicitly lambda-lift this function to subvert GHC's full laziness
-- optimisations, which otherwise tends to float out subexpressions
-- past the \handle, which is really a pessimisation in this case because
-- that lambda is a one-shot lambda.
--
-- Don't forget to export the function, to stop it being inlined too
-- (this appears to be better than NOINLINE, because the strictness
-- analyser still gets to worker-wrapper it).
--
-- This hack is a fairly big win for hPutStr performance. --SDM 18/9/2001
--
commitBuffer' raw sz@(I# _) count@(I# _) flush release
handle_@Handle__{ haFD=fd, haBuffer=ref, haBuffers=spare_buf_ref } = do
#ifdef DEBUG_DUMP
puts ("commitBuffer: sz=" ++ show sz ++ ", count=" ++ show count
++ ", flush=" ++ show flush ++ ", release=" ++ show release ++"\n")
#endif
old_buf@Buffer{ bufBuf=old_raw, bufRPtr=r, bufWPtr=w, bufSize=size }
<- readIORef ref
buf_ret <-
-- enough room in handle buffer?
if (not flush && (size - w > count))
-- The > is to be sure that we never exactly fill
-- up the buffer, which would require a flush. So
-- if copying the new data into the buffer would
-- make the buffer full, we just flush the existing
-- buffer and the new data immediately, rather than
-- copying before flushing.
-- not flushing, and there's enough room in the buffer:
-- just copy the data in and update bufWPtr.
then do memcpy_baoff_ba old_raw w raw (fromIntegral count)
writeIORef ref old_buf{ bufWPtr = w + count }
return (newEmptyBuffer raw WriteBuffer sz)
-- else, we have to flush
else do flushed_buf <- flushWriteBuffer fd (haIsStream handle_) old_buf
let this_buf =
Buffer{ bufBuf=raw, bufState=WriteBuffer,
bufRPtr=0, bufWPtr=count, bufSize=sz }
-- if: (a) we don't have to flush, and
-- (b) size(new buffer) == size(old buffer), and
-- (c) new buffer is not full,
-- we can just just swap them over...
if (not flush && sz == size && count /= sz)
then do
writeIORef ref this_buf
return flushed_buf
-- otherwise, we have to flush the new data too,
-- and start with a fresh buffer
else do
flushWriteBuffer fd (haIsStream handle_) this_buf
writeIORef ref flushed_buf
-- if the sizes were different, then allocate
-- a new buffer of the correct size.
if sz == size
then return (newEmptyBuffer raw WriteBuffer sz)
else allocateBuffer size WriteBuffer
-- release the buffer if necessary
case buf_ret of
Buffer{ bufSize=buf_ret_sz, bufBuf=buf_ret_raw } -> do
if release && buf_ret_sz == size
then do
spare_bufs <- readIORef spare_buf_ref
writeIORef spare_buf_ref
(BufferListCons buf_ret_raw spare_bufs)
return buf_ret
else
return buf_ret
-- ---------------------------------------------------------------------------
-- Reading/writing sequences of bytes.
-- ---------------------------------------------------------------------------
-- hPutBuf
-- | 'hPutBuf' @hdl buf count@ writes @count@ 8-bit bytes from the
-- buffer @buf@ to the handle @hdl@. It returns ().
--
-- This operation may fail with:
--
-- * 'ResourceVanished' if the handle is a pipe or socket, and the
-- reading end is closed. (If this is a POSIX system, and the program
-- has not asked to ignore SIGPIPE, then a SIGPIPE may be delivered
-- instead, whose default action is to terminate the program).
hPutBuf :: Handle -- handle to write to
-> Ptr a -- address of buffer
-> Int -- number of bytes of data in buffer
-> IO ()
hPutBuf h ptr count = do hPutBuf' h ptr count True; return ()
hPutBufNonBlocking
:: Handle -- handle to write to
-> Ptr a -- address of buffer
-> Int -- number of bytes of data in buffer
-> IO Int -- returns: number of bytes written
hPutBufNonBlocking h ptr count = hPutBuf' h ptr count False
hPutBuf':: Handle -- handle to write to
-> Ptr a -- address of buffer
-> Int -- number of bytes of data in buffer
-> Bool -- allow blocking?
-> IO Int
hPutBuf' handle ptr count can_block
| count == 0 = return 0
| count < 0 = illegalBufferSize handle "hPutBuf" count
| otherwise =
wantWritableHandle "hPutBuf" handle $
\ handle_@Handle__{ haFD=fd, haBuffer=ref, haIsStream=is_stream } ->
bufWrite fd ref is_stream ptr count can_block
bufWrite fd ref is_stream ptr count can_block =
seq count $ seq fd $ do -- strictness hack
old_buf@Buffer{ bufBuf=old_raw, bufRPtr=r, bufWPtr=w, bufSize=size }
<- readIORef ref
-- enough room in handle buffer?
if (size - w > count)
-- There's enough room in the buffer:
-- just copy the data in and update bufWPtr.
then do memcpy_baoff_ptr old_raw w ptr (fromIntegral count)
writeIORef ref old_buf{ bufWPtr = w + count }
return count
-- else, we have to flush
else do flushed_buf <- flushWriteBuffer fd is_stream old_buf
-- TODO: we should do a non-blocking flush here
writeIORef ref flushed_buf
-- if we can fit in the buffer, then just loop
if count < size
then bufWrite fd ref is_stream ptr count can_block
else if can_block
then do writeChunk fd is_stream (castPtr ptr) count
return count
else writeChunkNonBlocking fd is_stream ptr count
writeChunk :: FD -> Bool -> Ptr CChar -> Int -> IO ()
writeChunk fd is_stream ptr bytes = loop 0 bytes
where
loop :: Int -> Int -> IO ()
loop _ bytes | bytes <= 0 = return ()
loop off bytes = do
r <- fromIntegral `liftM`
writeRawBufferPtr "writeChunk" (fromIntegral fd) is_stream ptr
off (fromIntegral bytes)
-- write can't return 0
loop (off + r) (bytes - r)
writeChunkNonBlocking :: FD -> Bool -> Ptr a -> Int -> IO Int
writeChunkNonBlocking fd is_stream ptr bytes = loop 0 bytes
where
loop :: Int -> Int -> IO Int
loop off bytes | bytes <= 0 = return off
loop off bytes = do
#ifndef mingw32_TARGET_OS
ssize <- c_write (fromIntegral fd) (ptr `plusPtr` off) (fromIntegral bytes)
let r = fromIntegral ssize :: Int
if (r == -1)
then do errno <- getErrno
if (errno == eAGAIN || errno == eWOULDBLOCK)
then return off
else throwErrno "writeChunk"
else loop (off + r) (bytes - r)
#else
(ssize, rc) <- asyncWrite fd (fromIntegral $ fromEnum is_stream)
(fromIntegral bytes)
(ptr `plusPtr` off)
let r = fromIntegral ssize :: Int
if r == (-1)
then ioError (errnoToIOError "hPutBufNonBlocking" (Errno (fromIntegral rc)) Nothing Nothing)
else loop (off + r) (bytes - r)
#endif
-- ---------------------------------------------------------------------------
-- hGetBuf
-- | 'hGetBuf' @hdl buf count@ reads data from the handle @hdl@
-- into the buffer @buf@ until either EOF is reached or
-- @count@ 8-bit bytes have been read.
-- It returns the number of bytes actually read. This may be zero if
-- EOF was reached before any data was read (or if @count@ is zero).
--
-- 'hGetBuf' never raises an EOF exception, instead it returns a value
-- smaller than @count@.
--
-- If the handle is a pipe or socket, and the writing end
-- is closed, 'hGetBuf' will behave as if EOF was reached.
hGetBuf :: Handle -> Ptr a -> Int -> IO Int
hGetBuf h ptr count
| count == 0 = return 0
| count < 0 = illegalBufferSize h "hGetBuf" count
| otherwise =
wantReadableHandle "hGetBuf" h $
\ handle_@Handle__{ haFD=fd, haBuffer=ref, haIsStream=is_stream } -> do
bufRead fd ref is_stream ptr 0 count
-- small reads go through the buffer, large reads are satisfied by
-- taking data first from the buffer and then direct from the file
-- descriptor.
bufRead fd ref is_stream ptr so_far count =
seq fd $ seq so_far $ seq count $ do -- strictness hack
buf@Buffer{ bufBuf=raw, bufWPtr=w, bufRPtr=r, bufSize=sz } <- readIORef ref
if bufferEmpty buf
then if count > sz -- small read?
then do rest <- readChunk fd is_stream ptr count
return (so_far + rest)
else do mb_buf <- maybeFillReadBuffer fd True is_stream buf
case mb_buf of
Nothing -> return so_far -- got nothing, we're done
Just buf' -> do
writeIORef ref buf'
bufRead fd ref is_stream ptr so_far count
else do
let avail = w - r
if (count == avail)
then do
memcpy_ptr_baoff ptr raw r (fromIntegral count)
writeIORef ref buf{ bufWPtr=0, bufRPtr=0 }
return (so_far + count)
else do
if (count < avail)
then do
memcpy_ptr_baoff ptr raw r (fromIntegral count)
writeIORef ref buf{ bufRPtr = r + count }
return (so_far + count)
else do
memcpy_ptr_baoff ptr raw r (fromIntegral avail)
writeIORef ref buf{ bufWPtr=0, bufRPtr=0 }
let remaining = count - avail
so_far' = so_far + avail
ptr' = ptr `plusPtr` avail
if remaining < sz
then bufRead fd ref is_stream ptr' so_far' remaining
else do
rest <- readChunk fd is_stream ptr' remaining
return (so_far' + rest)
readChunk :: FD -> Bool -> Ptr a -> Int -> IO Int
readChunk fd is_stream ptr bytes = loop 0 bytes
where
loop :: Int -> Int -> IO Int
loop off bytes | bytes <= 0 = return off
loop off bytes = do
r <- fromIntegral `liftM`
readRawBufferPtr "readChunk" (fromIntegral fd) is_stream
(castPtr ptr) off (fromIntegral bytes)
if r == 0
then return off
else loop (off + r) (bytes - r)
-- | 'hGetBufNonBlocking' @hdl buf count@ reads data from the handle @hdl@
-- into the buffer @buf@ until either EOF is reached, or
-- @count@ 8-bit bytes have been read, or there is no more data available
-- to read immediately.
--
-- 'hGetBufNonBlocking' is identical to 'hGetBuf', except that it will
-- never block waiting for data to become available, instead it returns
-- only whatever data is available. To wait for data to arrive before
-- calling 'hGetBufNonBlocking', use 'hWaitForInput'.
--
-- If the handle is a pipe or socket, and the writing end
-- is closed, 'hGetBufNonBlocking' will behave as if EOF was reached.
--
hGetBufNonBlocking :: Handle -> Ptr a -> Int -> IO Int
hGetBufNonBlocking h ptr count
| count == 0 = return 0
| count < 0 = illegalBufferSize h "hGetBufNonBlocking" count
| otherwise =
wantReadableHandle "hGetBufNonBlocking" h $
\ handle_@Handle__{ haFD=fd, haBuffer=ref, haIsStream=is_stream } -> do
bufReadNonBlocking fd ref is_stream ptr 0 count
bufReadNonBlocking fd ref is_stream ptr so_far count =
seq fd $ seq so_far $ seq count $ do -- strictness hack
buf@Buffer{ bufBuf=raw, bufWPtr=w, bufRPtr=r, bufSize=sz } <- readIORef ref
if bufferEmpty buf
then if count > sz -- large read?
then do rest <- readChunkNonBlocking fd is_stream ptr count
return (so_far + rest)
else do buf' <- fillReadBufferWithoutBlocking fd is_stream buf
case buf' of { Buffer{ bufWPtr=w } ->
if (w == 0)
then return so_far
else do writeIORef ref buf'
bufReadNonBlocking fd ref is_stream ptr
so_far (min count w)
-- NOTE: new count is 'min count w'
-- so we will just copy the contents of the
-- buffer in the recursive call, and not
-- loop again.
}
else do
let avail = w - r
if (count == avail)
then do
memcpy_ptr_baoff ptr raw r (fromIntegral count)
writeIORef ref buf{ bufWPtr=0, bufRPtr=0 }
return (so_far + count)
else do
if (count < avail)
then do
memcpy_ptr_baoff ptr raw r (fromIntegral count)
writeIORef ref buf{ bufRPtr = r + count }
return (so_far + count)
else do
memcpy_ptr_baoff ptr raw r (fromIntegral avail)
writeIORef ref buf{ bufWPtr=0, bufRPtr=0 }
let remaining = count - avail
so_far' = so_far + avail
ptr' = ptr `plusPtr` avail
-- we haven't attempted to read anything yet if we get to here.
if remaining < sz
then bufReadNonBlocking fd ref is_stream ptr' so_far' remaining
else do
rest <- readChunkNonBlocking fd is_stream ptr' remaining
return (so_far' + rest)
readChunkNonBlocking :: FD -> Bool -> Ptr a -> Int -> IO Int
readChunkNonBlocking fd is_stream ptr bytes = do
#ifndef mingw32_TARGET_OS
ssize <- c_read (fromIntegral fd) (castPtr ptr) (fromIntegral bytes)
let r = fromIntegral ssize :: Int
if (r == -1)
then do errno <- getErrno
if (errno == eAGAIN || errno == eWOULDBLOCK)
then return 0
else throwErrno "readChunk"
else return r
#else
(ssize, rc) <- asyncRead fd (fromIntegral $ fromEnum is_stream)
(fromIntegral bytes) ptr
let r = fromIntegral ssize :: Int
if r == (-1)
then ioError (errnoToIOError "hGetBufNonBlocking" (Errno (fromIntegral rc)) Nothing Nothing)
else return r
#endif
slurpFile :: FilePath -> IO (Ptr (), Int)
slurpFile fname = do
handle <- openFile fname ReadMode
sz <- hFileSize handle
if sz > fromIntegral (maxBound::Int) then
ioError (userError "slurpFile: file too big")
else do
let sz_i = fromIntegral sz
if sz_i == 0 then return (nullPtr, 0) else do
chunk <- mallocBytes sz_i
r <- hGetBuf handle chunk sz_i
hClose handle
return (chunk, r)
-- ---------------------------------------------------------------------------
-- memcpy wrappers
foreign import ccall unsafe "__hscore_memcpy_src_off"
memcpy_ba_baoff :: RawBuffer -> RawBuffer -> Int -> CSize -> IO (Ptr ())
foreign import ccall unsafe "__hscore_memcpy_src_off"
memcpy_ptr_baoff :: Ptr a -> RawBuffer -> Int -> CSize -> IO (Ptr ())
foreign import ccall unsafe "__hscore_memcpy_dst_off"
memcpy_baoff_ba :: RawBuffer -> Int -> RawBuffer -> CSize -> IO (Ptr ())
foreign import ccall unsafe "__hscore_memcpy_dst_off"
memcpy_baoff_ptr :: RawBuffer -> Int -> Ptr a -> CSize -> IO (Ptr ())
-----------------------------------------------------------------------------
-- Internal Utils
illegalBufferSize :: Handle -> String -> Int -> IO a
illegalBufferSize handle fn (sz :: Int) =
ioException (IOError (Just handle)
InvalidArgument fn
("illegal buffer size " ++ showsPrec 9 sz [])
Nothing)
|