1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Odds and ends, mostly functions for reading and showing
-- 'RealFloat'-like kind of values.
--
-----------------------------------------------------------------------------
module Numeric (
-- * Showing
showSigned, -- :: (Real a) => (a -> ShowS) -> Int -> a -> ShowS
showIntAtBase, -- :: Integral a => a -> (a -> Char) -> a -> ShowS
showInt, -- :: Integral a => a -> ShowS
showHex, -- :: Integral a => a -> ShowS
showOct, -- :: Integral a => a -> ShowS
showEFloat, -- :: (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat, -- :: (RealFloat a) => Maybe Int -> a -> ShowS
showGFloat, -- :: (RealFloat a) => Maybe Int -> a -> ShowS
showFloat, -- :: (RealFloat a) => a -> ShowS
floatToDigits, -- :: (RealFloat a) => Integer -> a -> ([Int], Int)
-- * Reading
-- | /NB:/ 'readInt' is the \'dual\' of 'showIntAtBase',
-- and 'readDec' is the \`dual\' of 'showInt'.
-- The inconsistent naming is a historical accident.
readSigned, -- :: (Real a) => ReadS a -> ReadS a
readInt, -- :: (Integral a) => a -> (Char -> Bool)
-- -> (Char -> Int) -> ReadS a
readDec, -- :: (Integral a) => ReadS a
readOct, -- :: (Integral a) => ReadS a
readHex, -- :: (Integral a) => ReadS a
readFloat, -- :: (RealFloat a) => ReadS a
lexDigits, -- :: ReadS String
-- * Miscellaneous
fromRat, -- :: (RealFloat a) => Rational -> a
) where
#ifdef __GLASGOW_HASKELL__
import GHC.Base
import GHC.Read
import GHC.Real
import GHC.Float
import GHC.Num
import GHC.Show
import Data.Maybe
import Text.ParserCombinators.ReadP( ReadP, readP_to_S, pfail )
import qualified Text.Read.Lex as L
#else
import Data.Char
#endif
#ifdef __HUGS__
import Hugs.Prelude
import Hugs.Numeric
#endif
#ifdef __GLASGOW_HASKELL__
-- -----------------------------------------------------------------------------
-- Reading
-- | Reads an /unsigned/ 'Integral' value in an arbitrary base.
readInt :: Num a
=> a -- ^ the base
-> (Char -> Bool) -- ^ a predicate distinguishing valid digits in this base
-> (Char -> Int) -- ^ a function converting a valid digit character to an 'Int'
-> ReadS a
readInt base isDigit valDigit = readP_to_S (L.readIntP base isDigit valDigit)
-- | Read an unsigned number in octal notation.
readOct :: Num a => ReadS a
readOct = readP_to_S L.readOctP
-- | Read an unsigned number in decimal notation.
readDec :: Num a => ReadS a
readDec = readP_to_S L.readDecP
-- | Read an unsigned number in hexadecimal notation.
-- Both upper or lower case letters are allowed.
readHex :: Num a => ReadS a
readHex = readP_to_S L.readHexP
-- | Reads an /unsigned/ 'RealFrac' value,
-- expressed in decimal scientific notation.
readFloat :: RealFrac a => ReadS a
readFloat = readP_to_S readFloatP
readFloatP :: RealFrac a => ReadP a
readFloatP =
do tok <- L.lex
case tok of
L.Rat y -> return (fromRational y)
L.Int i -> return (fromInteger i)
other -> pfail
-- It's turgid to have readSigned work using list comprehensions,
-- but it's specified as a ReadS to ReadS transformer
-- With a bit of luck no one will use it.
-- | Reads a /signed/ 'Real' value, given a reader for an unsigned value.
readSigned :: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read'
where read' r = read'' r ++
(do
("-",s) <- lex r
(x,t) <- read'' s
return (-x,t))
read'' r = do
(str,s) <- lex r
(n,"") <- readPos str
return (n,s)
-- -----------------------------------------------------------------------------
-- Showing
-- | Show /non-negative/ 'Integral' numbers in base 10.
showInt :: Integral a => a -> ShowS
showInt n cs
| n < 0 = error "Numeric.showInt: can't show negative numbers"
| otherwise = go n cs
where
go n cs
| n < 10 = case unsafeChr (ord '0' + fromIntegral n) of
c@(C# _) -> c:cs
| otherwise = case unsafeChr (ord '0' + fromIntegral r) of
c@(C# _) -> go q (c:cs)
where
(q,r) = n `quotRem` 10
-- Controlling the format and precision of floats. The code that
-- implements the formatting itself is in @PrelNum@ to avoid
-- mutual module deps.
{-# SPECIALIZE showEFloat ::
Maybe Int -> Float -> ShowS,
Maybe Int -> Double -> ShowS #-}
{-# SPECIALIZE showFFloat ::
Maybe Int -> Float -> ShowS,
Maybe Int -> Double -> ShowS #-}
{-# SPECIALIZE showGFloat ::
Maybe Int -> Float -> ShowS,
Maybe Int -> Double -> ShowS #-}
-- | Show a signed 'RealFloat' value
-- using scientific (exponential) notation (e.g. @2.45e2@, @1.5e-3@).
--
-- In the call @'showEFloat' digs val@, if @digs@ is 'Nothing',
-- the value is shown to full precision; if @digs@ is @'Just' d@,
-- then at most @d@ digits after the decimal point are shown.
showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
-- | Show a signed 'RealFloat' value
-- using standard decimal notation (e.g. @245000@, @0.0015@).
--
-- In the call @'showFFloat' digs val@, if @digs@ is 'Nothing',
-- the value is shown to full precision; if @digs@ is @'Just' d@,
-- then at most @d@ digits after the decimal point are shown.
showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
-- | Show a signed 'RealFloat' value
-- using standard decimal notation for arguments whose absolute value lies
-- between @0.1@ and @9,999,999@, and scientific notation otherwise.
--
-- In the call @'showGFloat' digs val@, if @digs@ is 'Nothing',
-- the value is shown to full precision; if @digs@ is @'Just' d@,
-- then at most @d@ digits after the decimal point are shown.
showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showEFloat d x = showString (formatRealFloat FFExponent d x)
showFFloat d x = showString (formatRealFloat FFFixed d x)
showGFloat d x = showString (formatRealFloat FFGeneric d x)
#endif /* __GLASGOW_HASKELL__ */
-- ---------------------------------------------------------------------------
-- Integer printing functions
-- | Shows a /non-negative/ 'Integral' number using the base specified by the
-- first argument, and the character representation specified by the second.
showIntAtBase :: Integral a => a -> (Int -> Char) -> a -> ShowS
showIntAtBase base toChr n r
| base <= 1 = error ("Numeric.showIntAtBase: applied to unsupported base " ++ show base)
| n < 0 = error ("Numeric.showIntAtBase: applied to negative number " ++ show n)
| otherwise = showIt (quotRem n base) r
where
showIt (n,d) r = seq c $ -- stricter than necessary
case n of
0 -> r'
_ -> showIt (quotRem n base) r'
where
c = toChr (fromIntegral d)
r' = c : r
-- | Show /non-negative/ 'Integral' numbers in base 16.
showHex :: Integral a => a -> ShowS
showHex = showIntAtBase 16 intToDigit
-- | Show /non-negative/ 'Integral' numbers in base 8.
showOct :: Integral a => a -> ShowS
showOct = showIntAtBase 8 intToDigit
|