1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Monad
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- The 'Functor', 'Monad' and 'MonadPlus' classes,
-- with some useful operations on monads.
module Control.Monad
(
-- * Functor and monad classes
Functor(fmap)
, Monad((>>=), (>>), return, fail)
, MonadPlus(mzero, mplus)
-- * Functions
-- ** Naming conventions
-- $naming
-- ** Basic @Monad@ functions
, mapM
, mapM_
, forM
, forM_
, sequence
, sequence_
, (=<<)
, (>=>)
, (<=<)
, forever
, void
-- ** Generalisations of list functions
, join
, msum
, mfilter
, filterM
, mapAndUnzipM
, zipWithM
, zipWithM_
, foldM
, foldM_
, replicateM
, replicateM_
-- ** Conditional execution of monadic expressions
, guard
, when
, unless
-- ** Monadic lifting operators
, liftM
, liftM2
, liftM3
, liftM4
, liftM5
, ap
-- ** Strict monadic functions
, (<$!>)
) where
import Data.Foldable ( Foldable, sequence_, sequenceA_, msum, mapM_, foldlM, forM_ )
import Data.Functor ( void, (<$>) )
import Data.Traversable ( forM, mapM, traverse, sequence, sequenceA )
import GHC.Base hiding ( mapM, sequence )
import GHC.List ( zipWith, unzip )
import GHC.Num ( (-) )
-- -----------------------------------------------------------------------------
-- Functions mandated by the Prelude
-- | @'guard' b@ is @'pure' ()@ if @b@ is 'True',
-- and 'empty' if @b@ is 'False'.
guard :: (Alternative f) => Bool -> f ()
guard True = pure ()
guard False = empty
-- | This generalizes the list-based 'filter' function.
{-# INLINE filterM #-}
filterM :: (Applicative m) => (a -> m Bool) -> [a] -> m [a]
filterM p = foldr (\ x -> liftA2 (\ flg -> if flg then (x:) else id) (p x)) (pure [])
infixr 1 <=<, >=>
-- | Left-to-right Kleisli composition of monads.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \x -> f x >>= g
-- | Right-to-left Kleisli composition of monads. @('>=>')@, with the arguments flipped.
--
-- Note how this operator resembles function composition @('.')@:
--
-- > (.) :: (b -> c) -> (a -> b) -> a -> c
-- > (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
(<=<) = flip (>=>)
-- | @'forever' act@ repeats the action infinitely.
forever :: (Applicative f) => f a -> f b
{-# INLINE forever #-}
forever a = let a' = a *> a' in a'
-- Use explicit sharing here, as it is prevents a space leak regardless of
-- optimizations.
-- -----------------------------------------------------------------------------
-- Other monad functions
-- | The 'mapAndUnzipM' function maps its first argument over a list, returning
-- the result as a pair of lists. This function is mainly used with complicated
-- data structures or a state-transforming monad.
mapAndUnzipM :: (Applicative m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
{-# INLINE mapAndUnzipM #-}
mapAndUnzipM f xs = unzip <$> traverse f xs
-- | The 'zipWithM' function generalizes 'zipWith' to arbitrary applicative functors.
zipWithM :: (Applicative m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
{-# INLINE zipWithM #-}
zipWithM f xs ys = sequenceA (zipWith f xs ys)
-- | 'zipWithM_' is the extension of 'zipWithM' which ignores the final result.
zipWithM_ :: (Applicative m) => (a -> b -> m c) -> [a] -> [b] -> m ()
{-# INLINE zipWithM_ #-}
zipWithM_ f xs ys = sequenceA_ (zipWith f xs ys)
{- | The 'foldM' function is analogous to 'foldl', except that its result is
encapsulated in a monad. Note that 'foldM' works from left-to-right over
the list arguments. This could be an issue where @('>>')@ and the `folded
function' are not commutative.
> foldM f a1 [x1, x2, ..., xm]
==
> do
> a2 <- f a1 x1
> a3 <- f a2 x2
> ...
> f am xm
If right-to-left evaluation is required, the input list should be reversed.
Note: 'foldM' is the same as 'foldlM'
-}
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
{-# INLINEABLE foldM #-}
{-# SPECIALISE foldM :: (a -> b -> IO a) -> a -> [b] -> IO a #-}
{-# SPECIALISE foldM :: (a -> b -> Maybe a) -> a -> [b] -> Maybe a #-}
foldM = foldlM
-- | Like 'foldM', but discards the result.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
{-# INLINEABLE foldM_ #-}
{-# SPECIALISE foldM_ :: (a -> b -> IO a) -> a -> [b] -> IO () #-}
{-# SPECIALISE foldM_ :: (a -> b -> Maybe a) -> a -> [b] -> Maybe () #-}
foldM_ f a xs = foldlM f a xs >> return ()
{-
Note [Worker/wrapper transform on replicateM/replicateM_
--------------------------------------------------------
The implementations of replicateM and replicateM_ both leverage the
worker/wrapper transform. The simpler implementation of replicateM_, as an
example, would be:
replicateM_ 0 _ = pure ()
replicateM_ n f = f *> replicateM_ (n - 1) f
However, the self-recrusive nature of this implementation inhibits inlining,
which means we never get to specialise to the action (`f` in the code above).
By contrast, the implementation below with a local loop makes it possible to
inline the entire definition (as hapens for foldr, for example) thereby
specialising for the particular action.
For further information, see this Trac comment, which includes side-by-side
Core.
https://ghc.haskell.org/trac/ghc/ticket/11795#comment:6
-}
-- | @'replicateM' n act@ performs the action @n@ times,
-- gathering the results.
replicateM :: (Applicative m) => Int -> m a -> m [a]
{-# INLINEABLE replicateM #-}
{-# SPECIALISE replicateM :: Int -> IO a -> IO [a] #-}
{-# SPECIALISE replicateM :: Int -> Maybe a -> Maybe [a] #-}
replicateM cnt0 f =
loop cnt0
where
loop cnt
| cnt <= 0 = pure []
| otherwise = liftA2 (:) f (loop (cnt - 1))
-- | Like 'replicateM', but discards the result.
replicateM_ :: (Applicative m) => Int -> m a -> m ()
{-# INLINEABLE replicateM_ #-}
{-# SPECIALISE replicateM_ :: Int -> IO a -> IO () #-}
{-# SPECIALISE replicateM_ :: Int -> Maybe a -> Maybe () #-}
replicateM_ cnt0 f =
loop cnt0
where
loop cnt
| cnt <= 0 = pure ()
| otherwise = f *> loop (cnt - 1)
-- | The reverse of 'when'.
unless :: (Applicative f) => Bool -> f () -> f ()
{-# INLINEABLE unless #-}
{-# SPECIALISE unless :: Bool -> IO () -> IO () #-}
{-# SPECIALISE unless :: Bool -> Maybe () -> Maybe () #-}
unless p s = if p then pure () else s
infixl 4 <$!>
-- | Strict version of 'Data.Functor.<$>'.
--
-- @since 4.8.0.0
(<$!>) :: Monad m => (a -> b) -> m a -> m b
{-# INLINE (<$!>) #-}
f <$!> m = do
x <- m
let z = f x
z `seq` return z
-- -----------------------------------------------------------------------------
-- Other MonadPlus functions
-- | Direct 'MonadPlus' equivalent of 'filter'
-- @'filter'@ = @(mfilter:: (a -> Bool) -> [a] -> [a]@
-- applicable to any 'MonadPlus', for example
-- @mfilter odd (Just 1) == Just 1@
-- @mfilter odd (Just 2) == Nothing@
mfilter :: (MonadPlus m) => (a -> Bool) -> m a -> m a
{-# INLINEABLE mfilter #-}
mfilter p ma = do
a <- ma
if p a then return a else mzero
{- $naming
The functions in this library use the following naming conventions:
* A postfix \'@M@\' always stands for a function in the Kleisli category:
The monad type constructor @m@ is added to function results
(modulo currying) and nowhere else. So, for example,
> filter :: (a -> Bool) -> [a] -> [a]
> filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
* A postfix \'@_@\' changes the result type from @(m a)@ to @(m ())@.
Thus, for example:
> sequence :: Monad m => [m a] -> m [a]
> sequence_ :: Monad m => [m a] -> m ()
* A prefix \'@m@\' generalizes an existing function to a monadic form.
Thus, for example:
> sum :: Num a => [a] -> a
> msum :: MonadPlus m => [m a] -> m a
-}
|