1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Foldable
-- Copyright : Ross Paterson 2005
-- License : BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Class of data structures that can be folded to a summary value.
--
-----------------------------------------------------------------------------
module Data.Foldable (
-- * Folds
Foldable(..),
-- ** Special biased folds
foldrM,
foldlM,
-- ** Folding actions
-- *** Applicative actions
traverse_,
for_,
sequenceA_,
asum,
-- *** Monadic actions
mapM_,
forM_,
sequence_,
msum,
-- ** Specialized folds
concat,
concatMap,
and,
or,
any,
all,
maximumBy,
minimumBy,
-- ** Searches
notElem,
find
) where
import Data.Bool
import Data.Either
import Data.Eq
import qualified GHC.List as List
import Data.Maybe
import Data.Monoid
import Data.Ord
import Data.Proxy
import GHC.Arr ( Array(..), elems, numElements,
foldlElems, foldrElems,
foldlElems', foldrElems',
foldl1Elems, foldr1Elems)
import GHC.Base hiding ( foldr )
import GHC.Generics
import GHC.Num ( Num(..) )
infix 4 `elem`, `notElem`
-- | Data structures that can be folded.
--
-- For example, given a data type
--
-- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--
-- a suitable instance would be
--
-- > instance Foldable Tree where
-- > foldMap f Empty = mempty
-- > foldMap f (Leaf x) = f x
-- > foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
--
-- This is suitable even for abstract types, as the monoid is assumed
-- to satisfy the monoid laws. Alternatively, one could define @foldr@:
--
-- > instance Foldable Tree where
-- > foldr f z Empty = z
-- > foldr f z (Leaf x) = f x z
-- > foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
--
-- @Foldable@ instances are expected to satisfy the following laws:
--
-- > foldr f z t = appEndo (foldMap (Endo . f) t ) z
--
-- > foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
--
-- > fold = foldMap id
--
-- @sum@, @product@, @maximum@, and @minimum@ should all be essentially
-- equivalent to @foldMap@ forms, such as
--
-- > sum = getSum . foldMap Sum
--
-- but may be less defined.
--
-- If the type is also a 'Functor' instance, it should satisfy
--
-- > foldMap f = fold . fmap f
--
-- which implies that
--
-- > foldMap f . fmap g = foldMap (f . g)
class Foldable t where
{-# MINIMAL foldMap | foldr #-}
-- | Combine the elements of a structure using a monoid.
fold :: Monoid m => t m -> m
fold = foldMap id
-- | Map each element of the structure to a monoid,
-- and combine the results.
foldMap :: Monoid m => (a -> m) -> t a -> m
{-# INLINE foldMap #-}
-- This INLINE allows more list functions to fuse. See Trac #9848.
foldMap f = foldr (mappend . f) mempty
-- | Right-associative fold of a structure.
--
-- In the case of lists, 'foldr', when applied to a binary operator, a
-- starting value (typically the right-identity of the operator), and a
-- list, reduces the list using the binary operator, from right to left:
--
-- > foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
--
-- Note that, since the head of the resulting expression is produced by
-- an application of the operator to the first element of the list,
-- 'foldr' can produce a terminating expression from an infinite list.
--
-- For a general 'Foldable' structure this should be semantically identical
-- to,
--
-- @foldr f z = 'List.foldr' f z . 'toList'@
--
foldr :: (a -> b -> b) -> b -> t a -> b
foldr f z t = appEndo (foldMap (Endo #. f) t) z
-- | Right-associative fold of a structure, but with strict application of
-- the operator.
--
foldr' :: (a -> b -> b) -> b -> t a -> b
foldr' f z0 xs = foldl f' id xs z0
where f' k x z = k $! f x z
-- | Left-associative fold of a structure.
--
-- In the case of lists, 'foldl', when applied to a binary
-- operator, a starting value (typically the left-identity of the operator),
-- and a list, reduces the list using the binary operator, from left to
-- right:
--
-- > foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
--
-- Note that to produce the outermost application of the operator the
-- entire input list must be traversed. This means that 'foldl'' will
-- diverge if given an infinite list.
--
-- Also note that if you want an efficient left-fold, you probably want to
-- use 'foldl'' instead of 'foldl'. The reason for this is that latter does
-- not force the "inner" results (e.g. @z `f` x1@ in the above example)
-- before applying them to the operator (e.g. to @(`f` x2)@). This results
-- in a thunk chain @O(n)@ elements long, which then must be evaluated from
-- the outside-in.
--
-- For a general 'Foldable' structure this should be semantically identical
-- to,
--
-- @foldl f z = 'List.foldl' f z . 'toList'@
--
foldl :: (b -> a -> b) -> b -> t a -> b
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
-- There's no point mucking around with coercions here,
-- because flip forces us to build a new function anyway.
-- | Left-associative fold of a structure but with strict application of
-- the operator.
--
-- This ensures that each step of the fold is forced to weak head normal
-- form before being applied, avoiding the collection of thunks that would
-- otherwise occur. This is often what you want to strictly reduce a finite
-- list to a single, monolithic result (e.g. 'length').
--
-- For a general 'Foldable' structure this should be semantically identical
-- to,
--
-- @foldl f z = 'List.foldl'' f z . 'toList'@
--
foldl' :: (b -> a -> b) -> b -> t a -> b
foldl' f z0 xs = foldr f' id xs z0
where f' x k z = k $! f z x
-- | A variant of 'foldr' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- @'foldr1' f = 'List.foldr1' f . 'toList'@
foldr1 :: (a -> a -> a) -> t a -> a
foldr1 f xs = fromMaybe (errorWithoutStackTrace "foldr1: empty structure")
(foldr mf Nothing xs)
where
mf x m = Just (case m of
Nothing -> x
Just y -> f x y)
-- | A variant of 'foldl' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- @'foldl1' f = 'List.foldl1' f . 'toList'@
foldl1 :: (a -> a -> a) -> t a -> a
foldl1 f xs = fromMaybe (errorWithoutStackTrace "foldl1: empty structure")
(foldl mf Nothing xs)
where
mf m y = Just (case m of
Nothing -> y
Just x -> f x y)
-- | List of elements of a structure, from left to right.
toList :: t a -> [a]
{-# INLINE toList #-}
toList t = build (\ c n -> foldr c n t)
-- | Test whether the structure is empty. The default implementation is
-- optimized for structures that are similar to cons-lists, because there
-- is no general way to do better.
null :: t a -> Bool
null = foldr (\_ _ -> False) True
-- | Returns the size/length of a finite structure as an 'Int'. The
-- default implementation is optimized for structures that are similar to
-- cons-lists, because there is no general way to do better.
length :: t a -> Int
length = foldl' (\c _ -> c+1) 0
-- | Does the element occur in the structure?
elem :: Eq a => a -> t a -> Bool
elem = any . (==)
-- | The largest element of a non-empty structure.
maximum :: forall a . Ord a => t a -> a
maximum = fromMaybe (errorWithoutStackTrace "maximum: empty structure") .
getMax . foldMap (Max #. (Just :: a -> Maybe a))
-- | The least element of a non-empty structure.
minimum :: forall a . Ord a => t a -> a
minimum = fromMaybe (errorWithoutStackTrace "minimum: empty structure") .
getMin . foldMap (Min #. (Just :: a -> Maybe a))
-- | The 'sum' function computes the sum of the numbers of a structure.
sum :: Num a => t a -> a
sum = getSum #. foldMap Sum
-- | The 'product' function computes the product of the numbers of a
-- structure.
product :: Num a => t a -> a
product = getProduct #. foldMap Product
-- instances for Prelude types
instance Foldable Maybe where
foldr _ z Nothing = z
foldr f z (Just x) = f x z
foldl _ z Nothing = z
foldl f z (Just x) = f z x
instance Foldable [] where
elem = List.elem
foldl = List.foldl
foldl' = List.foldl'
foldl1 = List.foldl1
foldr = List.foldr
foldr1 = List.foldr1
length = List.length
maximum = List.maximum
minimum = List.minimum
null = List.null
product = List.product
sum = List.sum
toList = id
instance Foldable (Either a) where
foldMap _ (Left _) = mempty
foldMap f (Right y) = f y
foldr _ z (Left _) = z
foldr f z (Right y) = f y z
length (Left _) = 0
length (Right _) = 1
null = isLeft
instance Foldable ((,) a) where
foldMap f (_, y) = f y
foldr f z (_, y) = f y z
instance Foldable (Array i) where
foldr = foldrElems
foldl = foldlElems
foldl' = foldlElems'
foldr' = foldrElems'
foldl1 = foldl1Elems
foldr1 = foldr1Elems
toList = elems
length = numElements
null a = numElements a == 0
instance Foldable Proxy where
foldMap _ _ = mempty
{-# INLINE foldMap #-}
fold _ = mempty
{-# INLINE fold #-}
foldr _ z _ = z
{-# INLINE foldr #-}
foldl _ z _ = z
{-# INLINE foldl #-}
foldl1 _ _ = errorWithoutStackTrace "foldl1: Proxy"
foldr1 _ _ = errorWithoutStackTrace "foldr1: Proxy"
length _ = 0
null _ = True
elem _ _ = False
sum _ = 0
product _ = 1
instance Foldable Dual where
foldMap = coerce
elem = (. getDual) #. (==)
foldl = coerce
foldl' = coerce
foldl1 _ = getDual
foldr f z (Dual x) = f x z
foldr' = foldr
foldr1 _ = getDual
length _ = 1
maximum = getDual
minimum = getDual
null _ = False
product = getDual
sum = getDual
toList (Dual x) = [x]
instance Foldable Sum where
foldMap = coerce
elem = (. getSum) #. (==)
foldl = coerce
foldl' = coerce
foldl1 _ = getSum
foldr f z (Sum x) = f x z
foldr' = foldr
foldr1 _ = getSum
length _ = 1
maximum = getSum
minimum = getSum
null _ = False
product = getSum
sum = getSum
toList (Sum x) = [x]
instance Foldable Product where
foldMap = coerce
elem = (. getProduct) #. (==)
foldl = coerce
foldl' = coerce
foldl1 _ = getProduct
foldr f z (Product x) = f x z
foldr' = foldr
foldr1 _ = getProduct
length _ = 1
maximum = getProduct
minimum = getProduct
null _ = False
product = getProduct
sum = getProduct
toList (Product x) = [x]
instance Foldable First where
foldMap f = foldMap f . getFirst
instance Foldable Last where
foldMap f = foldMap f . getLast
-- We don't export Max and Min because, as Edward Kmett pointed out to me,
-- there are two reasonable ways to define them. One way is to use Maybe, as we
-- do here; the other way is to impose a Bounded constraint on the Monoid
-- instance. We may eventually want to add both versions, but we don't want to
-- trample on anyone's toes by imposing Max = MaxMaybe.
newtype Max a = Max {getMax :: Maybe a}
newtype Min a = Min {getMin :: Maybe a}
instance Ord a => Monoid (Max a) where
mempty = Max Nothing
{-# INLINE mappend #-}
m `mappend` Max Nothing = m
Max Nothing `mappend` n = n
(Max m@(Just x)) `mappend` (Max n@(Just y))
| x >= y = Max m
| otherwise = Max n
instance Ord a => Monoid (Min a) where
mempty = Min Nothing
{-# INLINE mappend #-}
m `mappend` Min Nothing = m
Min Nothing `mappend` n = n
(Min m@(Just x)) `mappend` (Min n@(Just y))
| x <= y = Min m
| otherwise = Min n
-- Instances for GHC.Generics
instance Foldable U1 where
foldMap _ _ = mempty
{-# INLINE foldMap #-}
fold _ = mempty
{-# INLINE fold #-}
foldr _ z _ = z
{-# INLINE foldr #-}
foldl _ z _ = z
{-# INLINE foldl #-}
foldl1 _ _ = errorWithoutStackTrace "foldl1: U1"
foldr1 _ _ = errorWithoutStackTrace "foldr1: U1"
length _ = 0
null _ = True
elem _ _ = False
sum _ = 0
product _ = 1
deriving instance Foldable V1
deriving instance Foldable Par1
deriving instance Foldable f => Foldable (Rec1 f)
deriving instance Foldable (K1 i c)
deriving instance Foldable f => Foldable (M1 i c f)
deriving instance (Foldable f, Foldable g) => Foldable (f :+: g)
deriving instance (Foldable f, Foldable g) => Foldable (f :*: g)
deriving instance (Foldable f, Foldable g) => Foldable (f :.: g)
deriving instance Foldable UAddr
deriving instance Foldable UChar
deriving instance Foldable UDouble
deriving instance Foldable UFloat
deriving instance Foldable UInt
deriving instance Foldable UWord
-- | Monadic fold over the elements of a structure,
-- associating to the right, i.e. from right to left.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
foldrM f z0 xs = foldl f' return xs z0
where f' k x z = f x z >>= k
-- | Monadic fold over the elements of a structure,
-- associating to the left, i.e. from left to right.
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
foldlM f z0 xs = foldr f' return xs z0
where f' x k z = f z x >>= k
-- | Map each element of a structure to an action, evaluate these
-- actions from left to right, and ignore the results. For a version
-- that doesn't ignore the results see 'Data.Traversable.traverse'.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr ((*>) . f) (pure ())
-- | 'for_' is 'traverse_' with its arguments flipped. For a version
-- that doesn't ignore the results see 'Data.Traversable.for'.
--
-- >>> for_ [1..4] print
-- 1
-- 2
-- 3
-- 4
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
{-# INLINE for_ #-}
for_ = flip traverse_
-- | Map each element of a structure to a monadic action, evaluate
-- these actions from left to right, and ignore the results. For a
-- version that doesn't ignore the results see
-- 'Data.Traversable.mapM'.
--
-- As of base 4.8.0.0, 'mapM_' is just 'traverse_', specialized to
-- 'Monad'.
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
mapM_ f= foldr ((>>) . f) (return ())
-- | 'forM_' is 'mapM_' with its arguments flipped. For a version that
-- doesn't ignore the results see 'Data.Traversable.forM'.
--
-- As of base 4.8.0.0, 'forM_' is just 'for_', specialized to 'Monad'.
forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ = flip mapM_
-- | Evaluate each action in the structure from left to right, and
-- ignore the results. For a version that doesn't ignore the results
-- see 'Data.Traversable.sequenceA'.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
sequenceA_ = foldr (*>) (pure ())
-- | Evaluate each monadic action in the structure from left to right,
-- and ignore the results. For a version that doesn't ignore the
-- results see 'Data.Traversable.sequence'.
--
-- As of base 4.8.0.0, 'sequence_' is just 'sequenceA_', specialized
-- to 'Monad'.
sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
sequence_ = foldr (>>) (return ())
-- | The sum of a collection of actions, generalizing 'concat'.
asum :: (Foldable t, Alternative f) => t (f a) -> f a
{-# INLINE asum #-}
asum = foldr (<|>) empty
-- | The sum of a collection of actions, generalizing 'concat'.
-- As of base 4.8.0.0, 'msum' is just 'asum', specialized to 'MonadPlus'.
msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
{-# INLINE msum #-}
msum = asum
-- | The concatenation of all the elements of a container of lists.
concat :: Foldable t => t [a] -> [a]
concat xs = build (\c n -> foldr (\x y -> foldr c y x) n xs)
{-# INLINE concat #-}
-- | Map a function over all the elements of a container and concatenate
-- the resulting lists.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
concatMap f xs = build (\c n -> foldr (\x b -> foldr c b (f x)) n xs)
{-# INLINE concatMap #-}
-- These use foldr rather than foldMap to avoid repeated concatenation.
-- | 'and' returns the conjunction of a container of Bools. For the
-- result to be 'True', the container must be finite; 'False', however,
-- results from a 'False' value finitely far from the left end.
and :: Foldable t => t Bool -> Bool
and = getAll #. foldMap All
-- | 'or' returns the disjunction of a container of Bools. For the
-- result to be 'False', the container must be finite; 'True', however,
-- results from a 'True' value finitely far from the left end.
or :: Foldable t => t Bool -> Bool
or = getAny #. foldMap Any
-- | Determines whether any element of the structure satisfies the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool
any p = getAny #. foldMap (Any #. p)
-- | Determines whether all elements of the structure satisfy the predicate.
all :: Foldable t => (a -> Bool) -> t a -> Bool
all p = getAll #. foldMap (All #. p)
-- | The largest element of a non-empty structure with respect to the
-- given comparison function.
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
maximumBy cmp = foldr1 max'
where max' x y = case cmp x y of
GT -> x
_ -> y
-- | The least element of a non-empty structure with respect to the
-- given comparison function.
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
minimumBy cmp = foldr1 min'
where min' x y = case cmp x y of
GT -> y
_ -> x
-- | 'notElem' is the negation of 'elem'.
notElem :: (Foldable t, Eq a) => a -> t a -> Bool
notElem x = not . elem x
-- | The 'find' function takes a predicate and a structure and returns
-- the leftmost element of the structure matching the predicate, or
-- 'Nothing' if there is no such element.
find :: Foldable t => (a -> Bool) -> t a -> Maybe a
find p = getFirst . foldMap (\ x -> First (if p x then Just x else Nothing))
-- See Note [Function coercion]
(#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c)
(#.) _f = coerce
{-# INLINE (#.) #-}
{-
Note [Function coercion]
~~~~~~~~~~~~~~~~~~~~~~~~
Several functions here use (#.) instead of (.) to avoid potential efficiency
problems relating to #7542. The problem, in a nutshell:
If N is a newtype constructor, then N x will always have the same
representation as x (something similar applies for a newtype deconstructor).
However, if f is a function,
N . f = \x -> N (f x)
This looks almost the same as f, but the eta expansion lifts it--the lhs could
be _|_, but the rhs never is. This can lead to very inefficient code. Thus we
steal a technique from Shachaf and Edward Kmett and adapt it to the current
(rather clean) setting. Instead of using N . f, we use N .## f, which is
just
coerce f `asTypeOf` (N . f)
That is, we just *pretend* that f has the right type, and thanks to the safety
of coerce, the type checker guarantees that nothing really goes wrong. We still
have to be a bit careful, though: remember that #. completely ignores the
*value* of its left operand.
-}
|