1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Semigroup
-- Copyright : (C) 2011-2015 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- In mathematics, a semigroup is an algebraic structure consisting of a
-- set together with an associative binary operation. A semigroup
-- generalizes a monoid in that there might not exist an identity
-- element. It also (originally) generalized a group (a monoid with all
-- inverses) to a type where every element did not have to have an inverse,
-- thus the name semigroup.
--
-- The use of @(\<\>)@ in this module conflicts with an operator with the same
-- name that is being exported by Data.Monoid. However, this package
-- re-exports (most of) the contents of Data.Monoid, so to use semigroups
-- and monoids in the same package just
--
-- > import Data.Semigroup
--
-- @since 4.9.0.0
----------------------------------------------------------------------------
module Data.Semigroup (
Semigroup(..)
, stimesMonoid
, stimesIdempotent
, stimesIdempotentMonoid
, mtimesDefault
-- * Semigroups
, Min(..)
, Max(..)
, First(..)
, Last(..)
, WrappedMonoid(..)
-- * Re-exported monoids from Data.Monoid
, Monoid(..)
, Dual(..)
, Endo(..)
, All(..)
, Any(..)
, Sum(..)
, Product(..)
-- * A better monoid for Maybe
, Option(..)
, option
-- * Difference lists of a semigroup
, diff
, cycle1
-- * ArgMin, ArgMax
, Arg(..)
, ArgMin
, ArgMax
) where
import Prelude hiding (foldr1)
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import Data.Bifunctor
import Data.Coerce
import Data.Data
import Data.List.NonEmpty
import Data.Monoid (All (..), Any (..), Dual (..), Endo (..),
Product (..), Sum (..))
import Data.Monoid (Alt (..))
import qualified Data.Monoid as Monoid
import Data.Void
import GHC.Generics
infixr 6 <>
-- | The class of semigroups (types with an associative binary operation).
--
-- @since 4.9.0.0
class Semigroup a where
-- | An associative operation.
--
-- @
-- (a '<>' b) '<>' c = a '<>' (b '<>' c)
-- @
--
-- If @a@ is also a 'Monoid' we further require
--
-- @
-- ('<>') = 'mappend'
-- @
(<>) :: a -> a -> a
default (<>) :: Monoid a => a -> a -> a
(<>) = mappend
-- | Reduce a non-empty list with @\<\>@
--
-- The default definition should be sufficient, but this can be
-- overridden for efficiency.
--
sconcat :: NonEmpty a -> a
sconcat (a :| as) = go a as where
go b (c:cs) = b <> go c cs
go b [] = b
-- | Repeat a value @n@ times.
--
-- Given that this works on a 'Semigroup' it is allowed to fail if
-- you request 0 or fewer repetitions, and the default definition
-- will do so.
--
-- By making this a member of the class, idempotent semigroups and monoids can
-- upgrade this to execute in /O(1)/ by picking
-- @stimes = stimesIdempotent@ or @stimes = stimesIdempotentMonoid@
-- respectively.
stimes :: Integral b => b -> a -> a
stimes y0 x0
| y0 <= 0 = errorWithoutStackTrace "stimes: positive multiplier expected"
| otherwise = f x0 y0
where
f x y
| even y = f (x <> x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x <> x) (pred y `quot` 2) x
g x y z
| even y = g (x <> x) (y `quot` 2) z
| y == 1 = x <> z
| otherwise = g (x <> x) (pred y `quot` 2) (x <> z)
-- | A generalization of 'Data.List.cycle' to an arbitrary 'Semigroup'.
-- May fail to terminate for some values in some semigroups.
cycle1 :: Semigroup m => m -> m
cycle1 xs = xs' where xs' = xs <> xs'
instance Semigroup () where
_ <> _ = ()
sconcat _ = ()
stimes _ _ = ()
instance Semigroup b => Semigroup (a -> b) where
f <> g = \a -> f a <> g a
stimes n f e = stimes n (f e)
instance Semigroup [a] where
(<>) = (++)
stimes n x
| n < 0 = errorWithoutStackTrace "stimes: [], negative multiplier"
| otherwise = rep n
where
rep 0 = []
rep i = x ++ rep (i - 1)
instance Semigroup a => Semigroup (Maybe a) where
Nothing <> b = b
a <> Nothing = a
Just a <> Just b = Just (a <> b)
stimes _ Nothing = Nothing
stimes n (Just a) = case compare n 0 of
LT -> errorWithoutStackTrace "stimes: Maybe, negative multiplier"
EQ -> Nothing
GT -> Just (stimes n a)
instance Semigroup (Either a b) where
Left _ <> b = b
a <> _ = a
stimes = stimesIdempotent
instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
(a,b) <> (a',b') = (a<>a',b<>b')
stimes n (a,b) = (stimes n a, stimes n b)
instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
(a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c')
stimes n (a,b,c) = (stimes n a, stimes n b, stimes n c)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d)
=> Semigroup (a, b, c, d) where
(a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d')
stimes n (a,b,c,d) = (stimes n a, stimes n b, stimes n c, stimes n d)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e)
=> Semigroup (a, b, c, d, e) where
(a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e')
stimes n (a,b,c,d,e) =
(stimes n a, stimes n b, stimes n c, stimes n d, stimes n e)
instance Semigroup Ordering where
LT <> _ = LT
EQ <> y = y
GT <> _ = GT
stimes = stimesIdempotentMonoid
instance Semigroup a => Semigroup (Dual a) where
Dual a <> Dual b = Dual (b <> a)
stimes n (Dual a) = Dual (stimes n a)
instance Semigroup (Endo a) where
(<>) = coerce ((.) :: (a -> a) -> (a -> a) -> (a -> a))
stimes = stimesMonoid
instance Semigroup All where
(<>) = coerce (&&)
stimes = stimesIdempotentMonoid
instance Semigroup Any where
(<>) = coerce (||)
stimes = stimesIdempotentMonoid
instance Num a => Semigroup (Sum a) where
(<>) = coerce ((+) :: a -> a -> a)
stimes n (Sum a) = Sum (fromIntegral n * a)
instance Num a => Semigroup (Product a) where
(<>) = coerce ((*) :: a -> a -> a)
stimes n (Product a) = Product (a ^ n)
-- | This is a valid definition of 'stimes' for a 'Monoid'.
--
-- Unlike the default definition of 'stimes', it is defined for 0
-- and so it should be preferred where possible.
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesMonoid n x0 = case compare n 0 of
LT -> errorWithoutStackTrace "stimesMonoid: negative multiplier"
EQ -> mempty
GT -> f x0 n
where
f x y
| even y = f (x `mappend` x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x `mappend` x) (pred y `quot` 2) x
g x y z
| even y = g (x `mappend` x) (y `quot` 2) z
| y == 1 = x `mappend` z
| otherwise = g (x `mappend` x) (pred y `quot` 2) (x `mappend` z)
-- | This is a valid definition of 'stimes' for an idempotent 'Monoid'.
--
-- When @mappend x x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid n x = case compare n 0 of
LT -> errorWithoutStackTrace "stimesIdempotentMonoid: negative multiplier"
EQ -> mempty
GT -> x
-- | This is a valid definition of 'stimes' for an idempotent 'Semigroup'.
--
-- When @x <> x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/.
stimesIdempotent :: Integral b => b -> a -> a
stimesIdempotent n x
| n <= 0 = errorWithoutStackTrace "stimesIdempotent: positive multiplier expected"
| otherwise = x
instance Semigroup a => Semigroup (Const a b) where
(<>) = coerce ((<>) :: a -> a -> a)
stimes n (Const a) = Const (stimes n a)
instance Semigroup (Monoid.First a) where
Monoid.First Nothing <> b = b
a <> _ = a
stimes = stimesIdempotentMonoid
instance Semigroup (Monoid.Last a) where
a <> Monoid.Last Nothing = a
_ <> b = b
stimes = stimesIdempotentMonoid
instance Alternative f => Semigroup (Alt f a) where
(<>) = coerce ((<|>) :: f a -> f a -> f a)
stimes = stimesMonoid
instance Semigroup Void where
a <> _ = a
stimes = stimesIdempotent
instance Semigroup (NonEmpty a) where
(a :| as) <> ~(b :| bs) = a :| (as ++ b : bs)
newtype Min a = Min { getMin :: a }
deriving (Eq, Ord, Show, Read, Data, Typeable, Generic, Generic1)
instance Bounded a => Bounded (Min a) where
minBound = Min minBound
maxBound = Min maxBound
instance Enum a => Enum (Min a) where
succ (Min a) = Min (succ a)
pred (Min a) = Min (pred a)
toEnum = Min . toEnum
fromEnum = fromEnum . getMin
enumFrom (Min a) = Min <$> enumFrom a
enumFromThen (Min a) (Min b) = Min <$> enumFromThen a b
enumFromTo (Min a) (Min b) = Min <$> enumFromTo a b
enumFromThenTo (Min a) (Min b) (Min c) = Min <$> enumFromThenTo a b c
instance Ord a => Semigroup (Min a) where
(<>) = coerce (min :: a -> a -> a)
stimes = stimesIdempotent
instance (Ord a, Bounded a) => Monoid (Min a) where
mempty = maxBound
mappend = (<>)
instance Functor Min where
fmap f (Min x) = Min (f x)
instance Foldable Min where
foldMap f (Min a) = f a
instance Traversable Min where
traverse f (Min a) = Min <$> f a
instance Applicative Min where
pure = Min
a <* _ = a
_ *> a = a
Min f <*> Min x = Min (f x)
instance Monad Min where
(>>) = (*>)
Min a >>= f = f a
instance MonadFix Min where
mfix f = fix (f . getMin)
instance Num a => Num (Min a) where
(Min a) + (Min b) = Min (a + b)
(Min a) * (Min b) = Min (a * b)
(Min a) - (Min b) = Min (a - b)
negate (Min a) = Min (negate a)
abs (Min a) = Min (abs a)
signum (Min a) = Min (signum a)
fromInteger = Min . fromInteger
newtype Max a = Max { getMax :: a }
deriving (Eq, Ord, Show, Read, Data, Typeable, Generic, Generic1)
instance Bounded a => Bounded (Max a) where
minBound = Max minBound
maxBound = Max maxBound
instance Enum a => Enum (Max a) where
succ (Max a) = Max (succ a)
pred (Max a) = Max (pred a)
toEnum = Max . toEnum
fromEnum = fromEnum . getMax
enumFrom (Max a) = Max <$> enumFrom a
enumFromThen (Max a) (Max b) = Max <$> enumFromThen a b
enumFromTo (Max a) (Max b) = Max <$> enumFromTo a b
enumFromThenTo (Max a) (Max b) (Max c) = Max <$> enumFromThenTo a b c
instance Ord a => Semigroup (Max a) where
(<>) = coerce (max :: a -> a -> a)
stimes = stimesIdempotent
instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = minBound
mappend = (<>)
instance Functor Max where
fmap f (Max x) = Max (f x)
instance Foldable Max where
foldMap f (Max a) = f a
instance Traversable Max where
traverse f (Max a) = Max <$> f a
instance Applicative Max where
pure = Max
a <* _ = a
_ *> a = a
Max f <*> Max x = Max (f x)
instance Monad Max where
(>>) = (*>)
Max a >>= f = f a
instance MonadFix Max where
mfix f = fix (f . getMax)
instance Num a => Num (Max a) where
(Max a) + (Max b) = Max (a + b)
(Max a) * (Max b) = Max (a * b)
(Max a) - (Max b) = Max (a - b)
negate (Max a) = Max (negate a)
abs (Max a) = Max (abs a)
signum (Max a) = Max (signum a)
fromInteger = Max . fromInteger
-- | 'Arg' isn't itself a 'Semigroup' in its own right, but it can be
-- placed inside 'Min' and 'Max' to compute an arg min or arg max.
data Arg a b = Arg a b deriving
(Show, Read, Data, Typeable, Generic, Generic1)
type ArgMin a b = Min (Arg a b)
type ArgMax a b = Max (Arg a b)
instance Functor (Arg a) where
fmap f (Arg x a) = Arg x (f a)
instance Foldable (Arg a) where
foldMap f (Arg _ a) = f a
instance Traversable (Arg a) where
traverse f (Arg x a) = Arg x <$> f a
instance Eq a => Eq (Arg a b) where
Arg a _ == Arg b _ = a == b
instance Ord a => Ord (Arg a b) where
Arg a _ `compare` Arg b _ = compare a b
min x@(Arg a _) y@(Arg b _)
| a <= b = x
| otherwise = y
max x@(Arg a _) y@(Arg b _)
| a >= b = x
| otherwise = y
instance Bifunctor Arg where
bimap f g (Arg a b) = Arg (f a) (g b)
-- | Use @'Option' ('First' a)@ to get the behavior of
-- 'Data.Monoid.First' from "Data.Monoid".
newtype First a = First { getFirst :: a } deriving
(Eq, Ord, Show, Read, Data, Typeable, Generic, Generic1)
instance Bounded a => Bounded (First a) where
minBound = First minBound
maxBound = First maxBound
instance Enum a => Enum (First a) where
succ (First a) = First (succ a)
pred (First a) = First (pred a)
toEnum = First . toEnum
fromEnum = fromEnum . getFirst
enumFrom (First a) = First <$> enumFrom a
enumFromThen (First a) (First b) = First <$> enumFromThen a b
enumFromTo (First a) (First b) = First <$> enumFromTo a b
enumFromThenTo (First a) (First b) (First c) = First <$> enumFromThenTo a b c
instance Semigroup (First a) where
a <> _ = a
stimes = stimesIdempotent
instance Functor First where
fmap f (First x) = First (f x)
instance Foldable First where
foldMap f (First a) = f a
instance Traversable First where
traverse f (First a) = First <$> f a
instance Applicative First where
pure x = First x
a <* _ = a
_ *> a = a
First f <*> First x = First (f x)
instance Monad First where
(>>) = (*>)
First a >>= f = f a
instance MonadFix First where
mfix f = fix (f . getFirst)
-- | Use @'Option' ('Last' a)@ to get the behavior of
-- 'Data.Monoid.Last' from "Data.Monoid"
newtype Last a = Last { getLast :: a } deriving
(Eq, Ord, Show, Read, Data, Typeable, Generic, Generic1)
instance Bounded a => Bounded (Last a) where
minBound = Last minBound
maxBound = Last maxBound
instance Enum a => Enum (Last a) where
succ (Last a) = Last (succ a)
pred (Last a) = Last (pred a)
toEnum = Last . toEnum
fromEnum = fromEnum . getLast
enumFrom (Last a) = Last <$> enumFrom a
enumFromThen (Last a) (Last b) = Last <$> enumFromThen a b
enumFromTo (Last a) (Last b) = Last <$> enumFromTo a b
enumFromThenTo (Last a) (Last b) (Last c) = Last <$> enumFromThenTo a b c
instance Semigroup (Last a) where
_ <> b = b
stimes = stimesIdempotent
instance Functor Last where
fmap f (Last x) = Last (f x)
a <$ _ = Last a
instance Foldable Last where
foldMap f (Last a) = f a
instance Traversable Last where
traverse f (Last a) = Last <$> f a
instance Applicative Last where
pure = Last
a <* _ = a
_ *> a = a
Last f <*> Last x = Last (f x)
instance Monad Last where
(>>) = (*>)
Last a >>= f = f a
instance MonadFix Last where
mfix f = fix (f . getLast)
-- | Provide a Semigroup for an arbitrary Monoid.
newtype WrappedMonoid m = WrapMonoid { unwrapMonoid :: m }
deriving (Eq, Ord, Show, Read, Data, Typeable, Generic, Generic1)
instance Monoid m => Semigroup (WrappedMonoid m) where
(<>) = coerce (mappend :: m -> m -> m)
instance Monoid m => Monoid (WrappedMonoid m) where
mempty = WrapMonoid mempty
mappend = (<>)
instance Bounded a => Bounded (WrappedMonoid a) where
minBound = WrapMonoid minBound
maxBound = WrapMonoid maxBound
instance Enum a => Enum (WrappedMonoid a) where
succ (WrapMonoid a) = WrapMonoid (succ a)
pred (WrapMonoid a) = WrapMonoid (pred a)
toEnum = WrapMonoid . toEnum
fromEnum = fromEnum . unwrapMonoid
enumFrom (WrapMonoid a) = WrapMonoid <$> enumFrom a
enumFromThen (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromThen a b
enumFromTo (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromTo a b
enumFromThenTo (WrapMonoid a) (WrapMonoid b) (WrapMonoid c) =
WrapMonoid <$> enumFromThenTo a b c
-- | Repeat a value @n@ times.
--
-- > mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
--
-- Implemented using 'stimes' and 'mempty'.
--
-- This is a suitable definition for an 'mtimes' member of 'Monoid'.
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
mtimesDefault n x
| n == 0 = mempty
| otherwise = unwrapMonoid (stimes n (WrapMonoid x))
-- | 'Option' is effectively 'Maybe' with a better instance of
-- 'Monoid', built off of an underlying 'Semigroup' instead of an
-- underlying 'Monoid'.
--
-- Ideally, this type would not exist at all and we would just fix the
-- 'Monoid' instance of 'Maybe'
newtype Option a = Option { getOption :: Maybe a }
deriving (Eq, Ord, Show, Read, Data, Typeable, Generic, Generic1)
instance Functor Option where
fmap f (Option a) = Option (fmap f a)
instance Applicative Option where
pure a = Option (Just a)
Option a <*> Option b = Option (a <*> b)
Option Nothing *> _ = Option Nothing
_ *> b = b
instance Monad Option where
Option (Just a) >>= k = k a
_ >>= _ = Option Nothing
(>>) = (*>)
instance Alternative Option where
empty = Option Nothing
Option Nothing <|> b = b
a <|> _ = a
instance MonadPlus Option where
mzero = Option Nothing
mplus = (<|>)
instance MonadFix Option where
mfix f = Option (mfix (getOption . f))
instance Foldable Option where
foldMap f (Option (Just m)) = f m
foldMap _ (Option Nothing) = mempty
instance Traversable Option where
traverse f (Option (Just a)) = Option . Just <$> f a
traverse _ (Option Nothing) = pure (Option Nothing)
-- | Fold an 'Option' case-wise, just like 'maybe'.
option :: b -> (a -> b) -> Option a -> b
option n j (Option m) = maybe n j m
instance Semigroup a => Semigroup (Option a) where
(<>) = coerce ((<>) :: Maybe a -> Maybe a -> Maybe a)
stimes _ (Option Nothing) = Option Nothing
stimes n (Option (Just a)) = case compare n 0 of
LT -> errorWithoutStackTrace "stimes: Option, negative multiplier"
EQ -> Option Nothing
GT -> Option (Just (stimes n a))
instance Semigroup a => Monoid (Option a) where
mempty = Option Nothing
mappend = (<>)
-- | This lets you use a difference list of a 'Semigroup' as a 'Monoid'.
diff :: Semigroup m => m -> Endo m
diff = Endo . (<>)
instance Semigroup (Proxy s) where
_ <> _ = Proxy
sconcat _ = Proxy
stimes _ _ = Proxy
|