File: Base.hs

package info (click to toggle)
ghc 8.0.1-17
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 55,080 kB
  • ctags: 9,332
  • sloc: haskell: 363,120; ansic: 54,900; sh: 4,782; makefile: 974; perl: 542; asm: 315; python: 306; xml: 154; lisp: 7
file content (2266 lines) | stat: -rw-r--r-- 85,320 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__
{-# LANGUAGE MagicHash, DeriveDataTypeable, StandaloneDeriving #-}
#endif
#if !defined(TESTING) && __GLASGOW_HASKELL__ >= 703
{-# LANGUAGE Trustworthy #-}
#endif
{-# LANGUAGE ScopedTypeVariables #-}
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE TypeFamilies #-}
#endif

#include "containers.h"

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.IntMap.Base
-- Copyright   :  (c) Daan Leijen 2002
--                (c) Andriy Palamarchuk 2008
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- This defines the data structures and core (hidden) manipulations
-- on representations.
-----------------------------------------------------------------------------

-- [Note: INLINE bit fiddling]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- It is essential that the bit fiddling functions like mask, zero, branchMask
-- etc are inlined. If they do not, the memory allocation skyrockets. The GHC
-- usually gets it right, but it is disastrous if it does not. Therefore we
-- explicitly mark these functions INLINE.


-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Care must be taken when using 'go' function which captures an argument.
-- Sometimes (for example when the argument is passed to a data constructor,
-- as in insert), GHC heap-allocates more than necessary. Therefore C-- code
-- must be checked for increased allocation when creating and modifying such
-- functions.


-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of IntMap matters when considering performance.
-- Currently in GHC 7.0, when type has 3 constructors, they are matched from
-- the first to the last -- the best performance is achieved when the
-- constructors are ordered by frequency.
-- On GHC 7.0, reordering constructors from Nil | Tip | Bin to Bin | Tip | Nil
-- improves the benchmark by circa 10%.

module Data.IntMap.Base (
    -- * Map type
      IntMap(..), Key          -- instance Eq,Show

    -- * Operators
    , (!), (\\)

    -- * Query
    , null
    , size
    , member
    , notMember
    , lookup
    , findWithDefault
    , lookupLT
    , lookupGT
    , lookupLE
    , lookupGE

    -- * Construction
    , empty
    , singleton

    -- ** Insertion
    , insert
    , insertWith
    , insertWithKey
    , insertLookupWithKey

    -- ** Delete\/Update
    , delete
    , adjust
    , adjustWithKey
    , update
    , updateWithKey
    , updateLookupWithKey
    , alter

    -- * Combine

    -- ** Union
    , union
    , unionWith
    , unionWithKey
    , unions
    , unionsWith

    -- ** Difference
    , difference
    , differenceWith
    , differenceWithKey

    -- ** Intersection
    , intersection
    , intersectionWith
    , intersectionWithKey

    -- ** Universal combining function
    , mergeWithKey
    , mergeWithKey'

    -- * Traversal
    -- ** Map
    , map
    , mapWithKey
    , traverseWithKey
    , mapAccum
    , mapAccumWithKey
    , mapAccumRWithKey
    , mapKeys
    , mapKeysWith
    , mapKeysMonotonic

    -- * Folds
    , foldr
    , foldl
    , foldrWithKey
    , foldlWithKey
    , foldMapWithKey

    -- ** Strict folds
    , foldr'
    , foldl'
    , foldrWithKey'
    , foldlWithKey'

    -- * Conversion
    , elems
    , keys
    , assocs
    , keysSet
    , fromSet

    -- ** Lists
    , toList
    , fromList
    , fromListWith
    , fromListWithKey

    -- ** Ordered lists
    , toAscList
    , toDescList
    , fromAscList
    , fromAscListWith
    , fromAscListWithKey
    , fromDistinctAscList

    -- * Filter
    , filter
    , filterWithKey
    , partition
    , partitionWithKey

    , mapMaybe
    , mapMaybeWithKey
    , mapEither
    , mapEitherWithKey

    , split
    , splitLookup
    , splitRoot

    -- * Submap
    , isSubmapOf, isSubmapOfBy
    , isProperSubmapOf, isProperSubmapOfBy

    -- * Min\/Max
    , findMin
    , findMax
    , deleteMin
    , deleteMax
    , deleteFindMin
    , deleteFindMax
    , updateMin
    , updateMax
    , updateMinWithKey
    , updateMaxWithKey
    , minView
    , maxView
    , minViewWithKey
    , maxViewWithKey

    -- * Debugging
    , showTree
    , showTreeWith

    -- * Internal types
    , Mask, Prefix, Nat

    -- * Utility
    , natFromInt
    , intFromNat
    , link
    , bin
    , zero
    , nomatch
    , match
    , mask
    , maskW
    , shorter
    , branchMask
    , highestBitMask
    ) where

#if !(MIN_VERSION_base(4,8,0))
import Control.Applicative (Applicative(pure, (<*>)), (<$>))
import Data.Monoid (Monoid(..))
import Data.Traversable (Traversable(traverse))
import Data.Word (Word)
#endif
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup((<>), stimes), stimesIdempotentMonoid)
#endif

import Control.DeepSeq (NFData(rnf))
import Control.Monad (liftM)
import Data.Bits
import qualified Data.Foldable as Foldable
import Data.Maybe (fromMaybe)
import Data.Typeable
import Prelude hiding (lookup, map, filter, foldr, foldl, null)

import Data.IntSet.Base (Key)
import qualified Data.IntSet.Base as IntSet
import Data.Utils.BitUtil
import Data.Utils.StrictFold
import Data.Utils.StrictPair

#if __GLASGOW_HASKELL__
import Data.Data (Data(..), Constr, mkConstr, constrIndex, Fixity(Prefix),
                  DataType, mkDataType)
import GHC.Exts (build)
#if __GLASGOW_HASKELL__ >= 708
import qualified GHC.Exts as GHCExts
#endif
import Text.Read
#endif
#if __GLASGOW_HASKELL__ >= 709
import Data.Coerce
#endif


-- A "Nat" is a natural machine word (an unsigned Int)
type Nat = Word

natFromInt :: Key -> Nat
natFromInt = fromIntegral
{-# INLINE natFromInt #-}

intFromNat :: Nat -> Key
intFromNat = fromIntegral
{-# INLINE intFromNat #-}

{--------------------------------------------------------------------
  Types
--------------------------------------------------------------------}


-- | A map of integers to values @a@.

-- See Note: Order of constructors
data IntMap a = Bin {-# UNPACK #-} !Prefix
                    {-# UNPACK #-} !Mask
                    !(IntMap a)
                    !(IntMap a)
              | Tip {-# UNPACK #-} !Key a
              | Nil

type Prefix = Int
type Mask   = Int

{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}

-- | /O(min(n,W))/. Find the value at a key.
-- Calls 'error' when the element can not be found.
--
-- > fromList [(5,'a'), (3,'b')] ! 1    Error: element not in the map
-- > fromList [(5,'a'), (3,'b')] ! 5 == 'a'

(!) :: IntMap a -> Key -> a
m ! k = find k m

-- | Same as 'difference'.
(\\) :: IntMap a -> IntMap b -> IntMap a
m1 \\ m2 = difference m1 m2

infixl 9 \\{-This comment teaches CPP correct behaviour -}

{--------------------------------------------------------------------
  Types
--------------------------------------------------------------------}

instance Monoid (IntMap a) where
    mempty  = empty
    mconcat = unions
#if !(MIN_VERSION_base(4,9,0))
    mappend = union
#else
    mappend = (<>)

instance Semigroup (IntMap a) where
    (<>)    = union
    stimes  = stimesIdempotentMonoid
#endif

instance Foldable.Foldable IntMap where
  fold = go
    where go Nil = mempty
          go (Tip _ v) = v
          go (Bin _ _ l r) = go l `mappend` go r
  {-# INLINABLE fold #-}
  foldr = foldr
  {-# INLINE foldr #-}
  foldl = foldl
  {-# INLINE foldl #-}
  foldMap f t = go t
    where go Nil = mempty
          go (Tip _ v) = f v
          go (Bin _ _ l r) = go l `mappend` go r
  {-# INLINE foldMap #-}

#if MIN_VERSION_base(4,6,0)
  foldl' = foldl'
  {-# INLINE foldl' #-}
  foldr' = foldr'
  {-# INLINE foldr' #-}
#endif
#if MIN_VERSION_base(4,8,0)
  length = size
  {-# INLINE length #-}
  null   = null
  {-# INLINE null #-}
  toList = elems -- NB: Foldable.toList /= IntMap.toList
  {-# INLINE toList #-}
  elem = go
    where STRICT_1_OF_2(go)
          go _ Nil = False
          go x (Tip _ y) = x == y
          go x (Bin _ _ l r) = go x l || go x r
  {-# INLINABLE elem #-}
  maximum = start
    where start Nil = error "IntMap.Foldable.maximum: called with empty map"
          start (Tip _ y) = y
          start (Bin _ _ l r) = go (start l) r

          STRICT_1_OF_2(go)
          go m Nil = m
          go m (Tip _ y) = max m y
          go m (Bin _ _ l r) = go (go m l) r
  {-# INLINABLE maximum #-}
  minimum = start
    where start Nil = error "IntMap.Foldable.minimum: called with empty map"
          start (Tip _ y) = y
          start (Bin _ _ l r) = go (start l) r

          STRICT_1_OF_2(go)
          go m Nil = m
          go m (Tip _ y) = min m y
          go m (Bin _ _ l r) = go (go m l) r
  {-# INLINABLE minimum #-}
  sum = foldl' (+) 0
  {-# INLINABLE sum #-}
  product = foldl' (*) 1
  {-# INLINABLE product #-}
#endif

instance Traversable IntMap where
    traverse f = traverseWithKey (\_ -> f)
    {-# INLINE traverse #-}

instance NFData a => NFData (IntMap a) where
    rnf Nil = ()
    rnf (Tip _ v) = rnf v
    rnf (Bin _ _ l r) = rnf l `seq` rnf r

#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.

instance Data a => Data (IntMap a) where
  gfoldl f z im = z fromList `f` (toList im)
  toConstr _     = fromListConstr
  gunfold k z c  = case constrIndex c of
    1 -> k (z fromList)
    _ -> error "gunfold"
  dataTypeOf _   = intMapDataType
  dataCast1 f    = gcast1 f

fromListConstr :: Constr
fromListConstr = mkConstr intMapDataType "fromList" [] Prefix

intMapDataType :: DataType
intMapDataType = mkDataType "Data.IntMap.Base.IntMap" [fromListConstr]

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | /O(1)/. Is the map empty?
--
-- > Data.IntMap.null (empty)           == True
-- > Data.IntMap.null (singleton 1 'a') == False

null :: IntMap a -> Bool
null Nil = True
null _   = False
{-# INLINE null #-}

-- | /O(n)/. Number of elements in the map.
--
-- > size empty                                   == 0
-- > size (singleton 1 'a')                       == 1
-- > size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3
size :: IntMap a -> Int
size t
  = case t of
      Bin _ _ l r -> size l + size r
      Tip _ _ -> 1
      Nil     -> 0

-- | /O(min(n,W))/. Is the key a member of the map?
--
-- > member 5 (fromList [(5,'a'), (3,'b')]) == True
-- > member 1 (fromList [(5,'a'), (3,'b')]) == False

-- See Note: Local 'go' functions and capturing]
member :: Key -> IntMap a -> Bool
member k = k `seq` go
  where
    go (Bin p m l r) | nomatch k p m = False
                     | zero k m  = go l
                     | otherwise = go r
    go (Tip kx _) = k == kx
    go Nil = False

-- | /O(min(n,W))/. Is the key not a member of the map?
--
-- > notMember 5 (fromList [(5,'a'), (3,'b')]) == False
-- > notMember 1 (fromList [(5,'a'), (3,'b')]) == True

notMember :: Key -> IntMap a -> Bool
notMember k m = not $ member k m

-- | /O(min(n,W))/. Lookup the value at a key in the map. See also 'Data.Map.lookup'.

-- See Note: Local 'go' functions and capturing]
lookup :: Key -> IntMap a -> Maybe a
lookup k = k `seq` go
  where
    go (Bin p m l r) | nomatch k p m = Nothing
                     | zero k m  = go l
                     | otherwise = go r
    go (Tip kx x) | k == kx   = Just x
                  | otherwise = Nothing
    go Nil = Nothing


-- See Note: Local 'go' functions and capturing]
find :: Key -> IntMap a -> a
find k = k `seq` go
  where
    go (Bin p m l r) | nomatch k p m = not_found
                     | zero k m  = go l
                     | otherwise = go r
    go (Tip kx x) | k == kx   = x
                  | otherwise = not_found
    go Nil = not_found

    not_found = error ("IntMap.!: key " ++ show k ++ " is not an element of the map")

-- | /O(min(n,W))/. The expression @('findWithDefault' def k map)@
-- returns the value at key @k@ or returns @def@ when the key is not an
-- element of the map.
--
-- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
-- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'

-- See Note: Local 'go' functions and capturing]
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault def k = k `seq` go
  where
    go (Bin p m l r) | nomatch k p m = def
                     | zero k m  = go l
                     | otherwise = go r
    go (Tip kx x) | k == kx   = x
                  | otherwise = def
    go Nil = def

-- | /O(log n)/. Find largest key smaller than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')

-- See Note: Local 'go' functions and capturing.
lookupLT :: Key -> IntMap a -> Maybe (Key, a)
lookupLT k t = k `seq` case t of
    Bin _ m l r | m < 0 -> if k >= 0 then go r l else go Nil r
    _ -> go Nil t
  where
    go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMax def else unsafeFindMax r
                         | zero k m  = go def l
                         | otherwise = go l r
    go def (Tip ky y) | k <= ky   = unsafeFindMax def
                      | otherwise = Just (ky, y)
    go def Nil = unsafeFindMax def

-- | /O(log n)/. Find smallest key greater than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing

-- See Note: Local 'go' functions and capturing.
lookupGT :: Key -> IntMap a -> Maybe (Key, a)
lookupGT k t = k `seq` case t of
    Bin _ m l r | m < 0 -> if k >= 0 then go Nil l else go l r
    _ -> go Nil t
  where
    go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMin l else unsafeFindMin def
                         | zero k m  = go r l
                         | otherwise = go def r
    go def (Tip ky y) | k >= ky   = unsafeFindMin def
                      | otherwise = Just (ky, y)
    go def Nil = unsafeFindMin def

-- | /O(log n)/. Find largest key smaller or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')

-- See Note: Local 'go' functions and capturing.
lookupLE :: Key -> IntMap a -> Maybe (Key, a)
lookupLE k t = k `seq` case t of
    Bin _ m l r | m < 0 -> if k >= 0 then go r l else go Nil r
    _ -> go Nil t
  where
    go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMax def else unsafeFindMax r
                         | zero k m  = go def l
                         | otherwise = go l r
    go def (Tip ky y) | k < ky    = unsafeFindMax def
                      | otherwise = Just (ky, y)
    go def Nil = unsafeFindMax def

-- | /O(log n)/. Find smallest key greater or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing

-- See Note: Local 'go' functions and capturing.
lookupGE :: Key -> IntMap a -> Maybe (Key, a)
lookupGE k t = k `seq` case t of
    Bin _ m l r | m < 0 -> if k >= 0 then go Nil l else go l r
    _ -> go Nil t
  where
    go def (Bin p m l r) | nomatch k p m = if k < p then unsafeFindMin l else unsafeFindMin def
                         | zero k m  = go r l
                         | otherwise = go def r
    go def (Tip ky y) | k > ky    = unsafeFindMin def
                      | otherwise = Just (ky, y)
    go def Nil = unsafeFindMin def


-- Helper function for lookupGE and lookupGT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMin :: IntMap a -> Maybe (Key, a)
unsafeFindMin Nil = Nothing
unsafeFindMin (Tip ky y) = Just (ky, y)
unsafeFindMin (Bin _ _ l _) = unsafeFindMin l

-- Helper function for lookupLE and lookupLT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMax :: IntMap a -> Maybe (Key, a)
unsafeFindMax Nil = Nothing
unsafeFindMax (Tip ky y) = Just (ky, y)
unsafeFindMax (Bin _ _ _ r) = unsafeFindMax r

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty map.
--
-- > empty      == fromList []
-- > size empty == 0

empty :: IntMap a
empty
  = Nil
{-# INLINE empty #-}

-- | /O(1)/. A map of one element.
--
-- > singleton 1 'a'        == fromList [(1, 'a')]
-- > size (singleton 1 'a') == 1

singleton :: Key -> a -> IntMap a
singleton k x
  = Tip k x
{-# INLINE singleton #-}

{--------------------------------------------------------------------
  Insert
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Insert a new key\/value pair in the map.
-- If the key is already present in the map, the associated value is
-- replaced with the supplied value, i.e. 'insert' is equivalent to
-- @'insertWith' 'const'@.
--
-- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')]
-- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')]
-- > insert 5 'x' empty                         == singleton 5 'x'

insert :: Key -> a -> IntMap a -> IntMap a
insert k x t = k `seq`
  case t of
    Bin p m l r
      | nomatch k p m -> link k (Tip k x) p t
      | zero k m      -> Bin p m (insert k x l) r
      | otherwise     -> Bin p m l (insert k x r)
    Tip ky _
      | k==ky         -> Tip k x
      | otherwise     -> link k (Tip k x) ky t
    Nil -> Tip k x

-- right-biased insertion, used by 'union'
-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWith' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f new_value old_value@.
--
-- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]
-- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWith (++) 5 "xxx" empty                         == singleton 5 "xxx"

insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith f k x t
  = insertWithKey (\_ x' y' -> f x' y') k x t

-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWithKey' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f key new_value old_value@.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]
-- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWithKey f 5 "xxx" empty                         == singleton 5 "xxx"

insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey f k x t = k `seq`
  case t of
    Bin p m l r
      | nomatch k p m -> link k (Tip k x) p t
      | zero k m      -> Bin p m (insertWithKey f k x l) r
      | otherwise     -> Bin p m l (insertWithKey f k x r)
    Tip ky y
      | k==ky         -> Tip k (f k x y)
      | otherwise     -> link k (Tip k x) ky t
    Nil -> Tip k x

-- | /O(min(n,W))/. The expression (@'insertLookupWithKey' f k x map@)
-- is a pair where the first element is equal to (@'lookup' k map@)
-- and the second element equal to (@'insertWithKey' f k x map@).
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])
-- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "xxx")])
-- > insertLookupWithKey f 5 "xxx" empty                         == (Nothing,  singleton 5 "xxx")
--
-- This is how to define @insertLookup@ using @insertLookupWithKey@:
--
-- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t
-- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])
-- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "x")])

insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey f k x t = k `seq`
  case t of
    Bin p m l r
      | nomatch k p m -> (Nothing,link k (Tip k x) p t)
      | zero k m      -> let (found,l') = insertLookupWithKey f k x l in (found,Bin p m l' r)
      | otherwise     -> let (found,r') = insertLookupWithKey f k x r in (found,Bin p m l r')
    Tip ky y
      | k==ky         -> (Just y,Tip k (f k x y))
      | otherwise     -> (Nothing,link k (Tip k x) ky t)
    Nil -> (Nothing,Tip k x)


{--------------------------------------------------------------------
  Deletion
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Delete a key and its value from the map. When the key is not
-- a member of the map, the original map is returned.
--
-- > delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > delete 5 empty                         == empty

delete :: Key -> IntMap a -> IntMap a
delete k t = k `seq`
  case t of
    Bin p m l r
      | nomatch k p m -> t
      | zero k m      -> bin p m (delete k l) r
      | otherwise     -> bin p m l (delete k r)
    Tip ky _
      | k==ky         -> Nil
      | otherwise     -> t
    Nil -> Nil

-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjust ("new " ++) 7 empty                         == empty

adjust ::  (a -> a) -> Key -> IntMap a -> IntMap a
adjust f k m
  = adjustWithKey (\_ x -> f x) k m

-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > let f key x = (show key) ++ ":new " ++ x
-- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjustWithKey f 7 empty                         == empty

adjustWithKey ::  (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey f
  = updateWithKey (\k' x -> Just (f k' x))

-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

update ::  (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update f
  = updateWithKey (\_ x -> f x)

-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey f k t = k `seq`
  case t of
    Bin p m l r
      | nomatch k p m -> t
      | zero k m      -> bin p m (updateWithKey f k l) r
      | otherwise     -> bin p m l (updateWithKey f k r)
    Tip ky y
      | k==ky         -> case (f k y) of
                           Just y' -> Tip ky y'
                           Nothing -> Nil
      | otherwise     -> t
    Nil -> Nil

-- | /O(min(n,W))/. Lookup and update.
-- The function returns original value, if it is updated.
-- This is different behavior than 'Data.Map.updateLookupWithKey'.
-- Returns the original key value if the map entry is deleted.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")])
-- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a")])
-- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

updateLookupWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey f k t = k `seq`
  case t of
    Bin p m l r
      | nomatch k p m -> (Nothing,t)
      | zero k m      -> let (found,l') = updateLookupWithKey f k l in (found,bin p m l' r)
      | otherwise     -> let (found,r') = updateLookupWithKey f k r in (found,bin p m l r')
    Tip ky y
      | k==ky         -> case (f k y) of
                           Just y' -> (Just y,Tip ky y')
                           Nothing -> (Just y,Nil)
      | otherwise     -> (Nothing,t)
    Nil -> (Nothing,Nil)



-- | /O(min(n,W))/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof.
-- 'alter' can be used to insert, delete, or update a value in an 'IntMap'.
-- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter f k t = k `seq`
  case t of
    Bin p m l r
      | nomatch k p m -> case f Nothing of
                           Nothing -> t
                           Just x -> link k (Tip k x) p t
      | zero k m      -> bin p m (alter f k l) r
      | otherwise     -> bin p m l (alter f k r)
    Tip ky y
      | k==ky         -> case f (Just y) of
                           Just x -> Tip ky x
                           Nothing -> Nil
      | otherwise     -> case f Nothing of
                           Just x -> link k (Tip k x) ky t
                           Nothing -> Tip ky y
    Nil               -> case f Nothing of
                           Just x -> Tip k x
                           Nothing -> Nil


{--------------------------------------------------------------------
  Union
--------------------------------------------------------------------}
-- | The union of a list of maps.
--
-- > unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "b"), (5, "a"), (7, "C")]
-- > unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]
-- >     == fromList [(3, "B3"), (5, "A3"), (7, "C")]

unions :: [IntMap a] -> IntMap a
unions xs
  = foldlStrict union empty xs

-- | The union of a list of maps, with a combining operation.
--
-- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

unionsWith :: (a->a->a) -> [IntMap a] -> IntMap a
unionsWith f ts
  = foldlStrict (unionWith f) empty ts

-- | /O(n+m)/. The (left-biased) union of two maps.
-- It prefers the first map when duplicate keys are encountered,
-- i.e. (@'union' == 'unionWith' 'const'@).
--
-- > union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

union :: IntMap a -> IntMap a -> IntMap a
union m1 m2
  = mergeWithKey' Bin const id id m1 m2

-- | /O(n+m)/. The union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith f m1 m2
  = unionWithKey (\_ x y -> f x y) m1 m2

-- | /O(n+m)/. The union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
-- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey f m1 m2
  = mergeWithKey' Bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 (f k1 x1 x2)) id id m1 m2

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference between two maps (based on keys).
--
-- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

difference :: IntMap a -> IntMap b -> IntMap a
difference m1 m2
  = mergeWithKey (\_ _ _ -> Nothing) id (const Nil) m1 m2

-- | /O(n+m)/. Difference with a combining function.
--
-- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing
-- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])
-- >     == singleton 3 "b:B"

differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith f m1 m2
  = differenceWithKey (\_ x y -> f x y) m1 m2

-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns 'Nothing', the element is discarded (proper set difference).
-- If it returns (@'Just' y@), the element is updated with a new value @y@.
--
-- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing
-- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])
-- >     == singleton 3 "3:b|B"

differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey f m1 m2
  = mergeWithKey f id (const Nil) m1 m2


{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The (left-biased) intersection of two maps (based on keys).
--
-- > intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersection :: IntMap a -> IntMap b -> IntMap a
intersection m1 m2
  = mergeWithKey' bin const (const Nil) (const Nil) m1 m2

-- | /O(n+m)/. The intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith f m1 m2
  = intersectionWithKey (\_ x y -> f x y) m1 m2

-- | /O(n+m)/. The intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey f m1 m2
  = mergeWithKey' bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 (f k1 x1 x2)) (const Nil) (const Nil) m1 m2

{--------------------------------------------------------------------
  MergeWithKey
--------------------------------------------------------------------}

-- | /O(n+m)/. A high-performance universal combining function. Using
-- 'mergeWithKey', all combining functions can be defined without any loss of
-- efficiency (with exception of 'union', 'difference' and 'intersection',
-- where sharing of some nodes is lost with 'mergeWithKey').
--
-- Please make sure you know what is going on when using 'mergeWithKey',
-- otherwise you can be surprised by unexpected code growth or even
-- corruption of the data structure.
--
-- When 'mergeWithKey' is given three arguments, it is inlined to the call
-- site. You should therefore use 'mergeWithKey' only to define your custom
-- combining functions. For example, you could define 'unionWithKey',
-- 'differenceWithKey' and 'intersectionWithKey' as
--
-- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2
-- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2
-- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
--
-- When calling @'mergeWithKey' combine only1 only2@, a function combining two
-- 'IntMap's is created, such that
--
-- * if a key is present in both maps, it is passed with both corresponding
--   values to the @combine@ function. Depending on the result, the key is either
--   present in the result with specified value, or is left out;
--
-- * a nonempty subtree present only in the first map is passed to @only1@ and
--   the output is added to the result;
--
-- * a nonempty subtree present only in the second map is passed to @only2@ and
--   the output is added to the result.
--
-- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/.
-- The values can be modified arbitrarily. Most common variants of @only1@ and
-- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or
-- @'filterWithKey' f@ could be used for any @f@.

mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
             -> IntMap a -> IntMap b -> IntMap c
mergeWithKey f g1 g2 = mergeWithKey' bin combine g1 g2
  where -- We use the lambda form to avoid non-exhaustive pattern matches warning.
        combine = \(Tip k1 x1) (Tip _k2 x2) -> case f k1 x1 x2 of Nothing -> Nil
                                                                  Just x -> Tip k1 x
        {-# INLINE combine #-}
{-# INLINE mergeWithKey #-}

-- Slightly more general version of mergeWithKey. It differs in the following:
--
-- * the combining function operates on maps instead of keys and values. The
--   reason is to enable sharing in union, difference and intersection.
--
-- * mergeWithKey' is given an equivalent of bin. The reason is that in union*,
--   Bin constructor can be used, because we know both subtrees are nonempty.

mergeWithKey' :: (Prefix -> Mask -> IntMap c -> IntMap c -> IntMap c)
              -> (IntMap a -> IntMap b -> IntMap c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
              -> IntMap a -> IntMap b -> IntMap c
mergeWithKey' bin' f g1 g2 = go
  where
    go t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
      | shorter m1 m2  = merge1
      | shorter m2 m1  = merge2
      | p1 == p2       = bin' p1 m1 (go l1 l2) (go r1 r2)
      | otherwise      = maybe_link p1 (g1 t1) p2 (g2 t2)
      where
        merge1 | nomatch p2 p1 m1  = maybe_link p1 (g1 t1) p2 (g2 t2)
               | zero p2 m1        = bin' p1 m1 (go l1 t2) (g1 r1)
               | otherwise         = bin' p1 m1 (g1 l1) (go r1 t2)
        merge2 | nomatch p1 p2 m2  = maybe_link p1 (g1 t1) p2 (g2 t2)
               | zero p1 m2        = bin' p2 m2 (go t1 l2) (g2 r2)
               | otherwise         = bin' p2 m2 (g2 l2) (go t1 r2)

    go t1'@(Bin _ _ _ _) t2'@(Tip k2' _) = merge t2' k2' t1'
      where merge t2 k2 t1@(Bin p1 m1 l1 r1) | nomatch k2 p1 m1 = maybe_link p1 (g1 t1) k2 (g2 t2)
                                             | zero k2 m1 = bin' p1 m1 (merge t2 k2 l1) (g1 r1)
                                             | otherwise  = bin' p1 m1 (g1 l1) (merge t2 k2 r1)
            merge t2 k2 t1@(Tip k1 _) | k1 == k2 = f t1 t2
                                      | otherwise = maybe_link k1 (g1 t1) k2 (g2 t2)
            merge t2 _  Nil = g2 t2

    go t1@(Bin _ _ _ _) Nil = g1 t1

    go t1'@(Tip k1' _) t2' = merge t1' k1' t2'
      where merge t1 k1 t2@(Bin p2 m2 l2 r2) | nomatch k1 p2 m2 = maybe_link k1 (g1 t1) p2 (g2 t2)
                                             | zero k1 m2 = bin' p2 m2 (merge t1 k1 l2) (g2 r2)
                                             | otherwise  = bin' p2 m2 (g2 l2) (merge t1 k1 r2)
            merge t1 k1 t2@(Tip k2 _) | k1 == k2 = f t1 t2
                                      | otherwise = maybe_link k1 (g1 t1) k2 (g2 t2)
            merge t1 _  Nil = g1 t1

    go Nil t2 = g2 t2

    maybe_link _ Nil _ t2 = t2
    maybe_link _ t1 _ Nil = t1
    maybe_link p1 t1 p2 t2 = link p1 t1 p2 t2
    {-# INLINE maybe_link #-}
{-# INLINE mergeWithKey' #-}

{--------------------------------------------------------------------
  Min\/Max
--------------------------------------------------------------------}

-- | /O(min(n,W))/. Update the value at the minimal key.
--
-- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]
-- > updateMinWithKey (\ _ _ -> Nothing)                     (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMinWithKey f t =
  case t of Bin p m l r | m < 0 -> bin p m l (go f r)
            _ -> go f t
  where
    go f' (Bin p m l r) = bin p m (go f' l) r
    go f' (Tip k y) = case f' k y of
                        Just y' -> Tip k y'
                        Nothing -> Nil
    go _ Nil = error "updateMinWithKey Nil"

-- | /O(min(n,W))/. Update the value at the maximal key.
--
-- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]
-- > updateMaxWithKey (\ _ _ -> Nothing)                     (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMaxWithKey f t =
  case t of Bin p m l r | m < 0 -> bin p m (go f l) r
            _ -> go f t
  where
    go f' (Bin p m l r) = bin p m l (go f' r)
    go f' (Tip k y) = case f' k y of
                        Just y' -> Tip k y'
                        Nothing -> Nil
    go _ Nil = error "updateMaxWithKey Nil"

-- | /O(min(n,W))/. Retrieves the maximal (key,value) pair of the map, and
-- the map stripped of that element, or 'Nothing' if passed an empty map.
--
-- > maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b")
-- > maxViewWithKey empty == Nothing

maxViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)
maxViewWithKey t =
  case t of Nil -> Nothing
            Bin p m l r | m < 0 -> case go l of (result, l') -> Just (result, bin p m l' r)
            _ -> Just (go t)
  where
    go (Bin p m l r) = case go r of (result, r') -> (result, bin p m l r')
    go (Tip k y) = ((k, y), Nil)
    go Nil = error "maxViewWithKey Nil"

-- | /O(min(n,W))/. Retrieves the minimal (key,value) pair of the map, and
-- the map stripped of that element, or 'Nothing' if passed an empty map.
--
-- > minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a")
-- > minViewWithKey empty == Nothing

minViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)
minViewWithKey t =
  case t of Nil -> Nothing
            Bin p m l r | m < 0 -> case go r of (result, r') -> Just (result, bin p m l r')
            _ -> Just (go t)
  where
    go (Bin p m l r) = case go l of (result, l') -> (result, bin p m l' r)
    go (Tip k y) = ((k, y), Nil)
    go Nil = error "minViewWithKey Nil"

-- | /O(min(n,W))/. Update the value at the maximal key.
--
-- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]
-- > updateMax (\ _ -> Nothing)         (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMax f = updateMaxWithKey (const f)

-- | /O(min(n,W))/. Update the value at the minimal key.
--
-- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]
-- > updateMin (\ _ -> Nothing)         (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMin f = updateMinWithKey (const f)

-- Similar to the Arrow instance.
first :: (a -> c) -> (a, b) -> (c, b)
first f (x,y) = (f x,y)

-- | /O(min(n,W))/. Retrieves the maximal key of the map, and the map
-- stripped of that element, or 'Nothing' if passed an empty map.
maxView :: IntMap a -> Maybe (a, IntMap a)
maxView t = liftM (first snd) (maxViewWithKey t)

-- | /O(min(n,W))/. Retrieves the minimal key of the map, and the map
-- stripped of that element, or 'Nothing' if passed an empty map.
minView :: IntMap a -> Maybe (a, IntMap a)
minView t = liftM (first snd) (minViewWithKey t)

-- | /O(min(n,W))/. Delete and find the maximal element.
deleteFindMax :: IntMap a -> ((Key, a), IntMap a)
deleteFindMax = fromMaybe (error "deleteFindMax: empty map has no maximal element") . maxViewWithKey

-- | /O(min(n,W))/. Delete and find the minimal element.
deleteFindMin :: IntMap a -> ((Key, a), IntMap a)
deleteFindMin = fromMaybe (error "deleteFindMin: empty map has no minimal element") . minViewWithKey

-- | /O(min(n,W))/. The minimal key of the map.
findMin :: IntMap a -> (Key, a)
findMin Nil = error $ "findMin: empty map has no minimal element"
findMin (Tip k v) = (k,v)
findMin (Bin _ m l r)
  |   m < 0   = go r
  | otherwise = go l
    where go (Tip k v)      = (k,v)
          go (Bin _ _ l' _) = go l'
          go Nil            = error "findMax Nil"

-- | /O(min(n,W))/. The maximal key of the map.
findMax :: IntMap a -> (Key, a)
findMax Nil = error $ "findMax: empty map has no maximal element"
findMax (Tip k v) = (k,v)
findMax (Bin _ m l r)
  |   m < 0   = go l
  | otherwise = go r
    where go (Tip k v)      = (k,v)
          go (Bin _ _ _ r') = go r'
          go Nil            = error "findMax Nil"

-- | /O(min(n,W))/. Delete the minimal key. Returns an empty map if the map is empty.
--
-- Note that this is a change of behaviour for consistency with 'Data.Map.Map' &#8211;
-- versions prior to 0.5 threw an error if the 'IntMap' was already empty.
deleteMin :: IntMap a -> IntMap a
deleteMin = maybe Nil snd . minView

-- | /O(min(n,W))/. Delete the maximal key. Returns an empty map if the map is empty.
--
-- Note that this is a change of behaviour for consistency with 'Data.Map.Map' &#8211;
-- versions prior to 0.5 threw an error if the 'IntMap' was already empty.
deleteMax :: IntMap a -> IntMap a
deleteMax = maybe Nil snd . maxView


{--------------------------------------------------------------------
  Submap
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
-- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' (==)@).
isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isProperSubmapOf m1 m2
  = isProperSubmapOfBy (==) m1 m2

{- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
 The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when
 @m1@ and @m2@ are not equal,
 all keys in @m1@ are in @m2@, and when @f@ returns 'True' when
 applied to their respective values. For example, the following
 expressions are all 'True':

  > isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
  > isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

 But the following are all 'False':

  > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
  > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
  > isProperSubmapOfBy (<)  (fromList [(1,1)])       (fromList [(1,1),(2,2)])
-}
isProperSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isProperSubmapOfBy predicate t1 t2
  = case submapCmp predicate t1 t2 of
      LT -> True
      _  -> False

submapCmp :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp predicate t1@(Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
  | shorter m1 m2  = GT
  | shorter m2 m1  = submapCmpLt
  | p1 == p2       = submapCmpEq
  | otherwise      = GT  -- disjoint
  where
    submapCmpLt | nomatch p1 p2 m2  = GT
                | zero p1 m2        = submapCmp predicate t1 l2
                | otherwise         = submapCmp predicate t1 r2
    submapCmpEq = case (submapCmp predicate l1 l2, submapCmp predicate r1 r2) of
                    (GT,_ ) -> GT
                    (_ ,GT) -> GT
                    (EQ,EQ) -> EQ
                    _       -> LT

submapCmp _         (Bin _ _ _ _) _  = GT
submapCmp predicate (Tip kx x) (Tip ky y)
  | (kx == ky) && predicate x y = EQ
  | otherwise                   = GT  -- disjoint
submapCmp predicate (Tip k x) t
  = case lookup k t of
     Just y | predicate x y -> LT
     _                      -> GT -- disjoint
submapCmp _    Nil Nil = EQ
submapCmp _    Nil _   = LT

-- | /O(n+m)/. Is this a submap?
-- Defined as (@'isSubmapOf' = 'isSubmapOfBy' (==)@).
isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isSubmapOf m1 m2
  = isSubmapOfBy (==) m1 m2

{- | /O(n+m)/.
 The expression (@'isSubmapOfBy' f m1 m2@) returns 'True' if
 all keys in @m1@ are in @m2@, and when @f@ returns 'True' when
 applied to their respective values. For example, the following
 expressions are all 'True':

  > isSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
  > isSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
  > isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

 But the following are all 'False':

  > isSubmapOfBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)])
  > isSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
  > isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
-}
isSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy predicate t1@(Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
  | shorter m1 m2  = False
  | shorter m2 m1  = match p1 p2 m2 && (if zero p1 m2 then isSubmapOfBy predicate t1 l2
                                                      else isSubmapOfBy predicate t1 r2)
  | otherwise      = (p1==p2) && isSubmapOfBy predicate l1 l2 && isSubmapOfBy predicate r1 r2
isSubmapOfBy _         (Bin _ _ _ _) _ = False
isSubmapOfBy predicate (Tip k x) t     = case lookup k t of
                                         Just y  -> predicate x y
                                         Nothing -> False
isSubmapOfBy _         Nil _           = True

{--------------------------------------------------------------------
  Mapping
--------------------------------------------------------------------}
-- | /O(n)/. Map a function over all values in the map.
--
-- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]

map :: (a -> b) -> IntMap a -> IntMap b
map f t
  = case t of
      Bin p m l r -> Bin p m (map f l) (map f r)
      Tip k x     -> Tip k (f x)
      Nil         -> Nil

#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] map #-}
{-# RULES
"map/map" forall f g xs . map f (map g xs) = map (f . g) xs
 #-}
#endif
#if __GLASGOW_HASKELL__ >= 709
-- Safe coercions were introduced in 7.8, but did not play well with RULES yet.
{-# RULES
"map/coerce" map coerce = coerce
 #-}
#endif

-- | /O(n)/. Map a function over all values in the map.
--
-- > let f key x = (show key) ++ ":" ++ x
-- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]

mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey f t
  = case t of
      Bin p m l r -> Bin p m (mapWithKey f l) (mapWithKey f r)
      Tip k x     -> Tip k (f k x)
      Nil         -> Nil

#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] mapWithKey #-}
{-# RULES
"mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) =
  mapWithKey (\k a -> f k (g k a)) xs
"mapWithKey/map" forall f g xs . mapWithKey f (map g xs) =
  mapWithKey (\k a -> f k (g a)) xs
"map/mapWithKey" forall f g xs . map f (mapWithKey g xs) =
  mapWithKey (\k a -> f (g k a)) xs
 #-}
#endif

-- | /O(n)/.
-- @'traverseWithKey' f s == 'fromList' <$> 'traverse' (\(k, v) -> (,) k <$> f k v) ('toList' m)@
-- That is, behaves exactly like a regular 'traverse' except that the traversing
-- function also has access to the key associated with a value.
--
-- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')])
-- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')])           == Nothing
traverseWithKey :: Applicative t => (Key -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey f = go
  where
    go Nil = pure Nil
    go (Tip k v) = Tip k <$> f k v
    go (Bin p m l r) = Bin p m <$> go l <*> go r
{-# INLINE traverseWithKey #-}

-- | /O(n)/. The function @'mapAccum'@ threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a b = (a ++ b, b ++ "X")
-- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])

mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccum f = mapAccumWithKey (\a' _ x -> f a' x)

-- | /O(n)/. The function @'mapAccumWithKey'@ threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")
-- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])

mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumWithKey f a t
  = mapAccumL f a t

-- | /O(n)/. The function @'mapAccumL'@ threads an accumulating
-- argument through the map in ascending order of keys.
mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumL f a t
  = case t of
      Bin p m l r -> let (a1,l') = mapAccumL f a l
                         (a2,r') = mapAccumL f a1 r
                     in (a2,Bin p m l' r')
      Tip k x     -> let (a',x') = f a k x in (a',Tip k x')
      Nil         -> (a,Nil)

-- | /O(n)/. The function @'mapAccumR'@ threads an accumulating
-- argument through the map in descending order of keys.
mapAccumRWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumRWithKey f a t
  = case t of
      Bin p m l r -> let (a1,r') = mapAccumRWithKey f a r
                         (a2,l') = mapAccumRWithKey f a1 l
                     in (a2,Bin p m l' r')
      Tip k x     -> let (a',x') = f a k x in (a',Tip k x')
      Nil         -> (a,Nil)

-- | /O(n*min(n,W))/.
-- @'mapKeys' f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- The size of the result may be smaller if @f@ maps two or more distinct
-- keys to the same new key.  In this case the value at the greatest of the
-- original keys is retained.
--
-- > mapKeys (+ 1) (fromList [(5,"a"), (3,"b")])                        == fromList [(4, "b"), (6, "a")]
-- > mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c"
-- > mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"

mapKeys :: (Key->Key) -> IntMap a -> IntMap a
mapKeys f = fromList . foldrWithKey (\k x xs -> (f k, x) : xs) []

-- | /O(n*min(n,W))/.
-- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- The size of the result may be smaller if @f@ maps two or more distinct
-- keys to the same new key.  In this case the associated values will be
-- combined using @c@.
--
-- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"
-- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"

mapKeysWith :: (a -> a -> a) -> (Key->Key) -> IntMap a -> IntMap a
mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) []

-- | /O(n*min(n,W))/.
-- @'mapKeysMonotonic' f s == 'mapKeys' f s@, but works only when @f@
-- is strictly monotonic.
-- That is, for any values @x@ and @y@, if @x@ < @y@ then @f x@ < @f y@.
-- /The precondition is not checked./
-- Semi-formally, we have:
--
-- > and [x < y ==> f x < f y | x <- ls, y <- ls]
-- >                     ==> mapKeysMonotonic f s == mapKeys f s
-- >     where ls = keys s
--
-- This means that @f@ maps distinct original keys to distinct resulting keys.
-- This function has slightly better performance than 'mapKeys'.
--
-- > mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]

mapKeysMonotonic :: (Key->Key) -> IntMap a -> IntMap a
mapKeysMonotonic f = fromDistinctAscList . foldrWithKey (\k x xs -> (f k, x) : xs) []

{--------------------------------------------------------------------
  Filter
--------------------------------------------------------------------}
-- | /O(n)/. Filter all values that satisfy some predicate.
--
-- > filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty
-- > filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty

filter :: (a -> Bool) -> IntMap a -> IntMap a
filter p m
  = filterWithKey (\_ x -> p x) m

-- | /O(n)/. Filter all keys\/values that satisfy some predicate.
--
-- > filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey predicate t
  = case t of
      Bin p m l r
        -> bin p m (filterWithKey predicate l) (filterWithKey predicate r)
      Tip k x
        | predicate k x -> t
        | otherwise     -> Nil
      Nil -> Nil

-- | /O(n)/. Partition the map according to some predicate. The first
-- map contains all elements that satisfy the predicate, the second all
-- elements that fail the predicate. See also 'split'.
--
-- > partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")
-- > partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)
-- > partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

partition :: (a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partition p m
  = partitionWithKey (\_ x -> p x) m

-- | /O(n)/. Partition the map according to some predicate. The first
-- map contains all elements that satisfy the predicate, the second all
-- elements that fail the predicate. See also 'split'.
--
-- > partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b")
-- > partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)
-- > partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

partitionWithKey :: (Key -> a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partitionWithKey predicate0 t0 = toPair $ go predicate0 t0
  where
    go predicate t
      = case t of
          Bin p m l r
            -> let (l1 :*: l2) = go predicate l
                   (r1 :*: r2) = go predicate r
               in bin p m l1 r1 :*: bin p m l2 r2
          Tip k x
            | predicate k x -> (t :*: Nil)
            | otherwise     -> (Nil :*: t)
          Nil -> (Nil :*: Nil)

-- | /O(n)/. Map values and collect the 'Just' results.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"

mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe f = mapMaybeWithKey (\_ x -> f x)

-- | /O(n)/. Map keys\/values and collect the 'Just' results.
--
-- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing
-- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"

mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey f (Bin p m l r)
  = bin p m (mapMaybeWithKey f l) (mapMaybeWithKey f r)
mapMaybeWithKey f (Tip k x) = case f k x of
  Just y  -> Tip k y
  Nothing -> Nil
mapMaybeWithKey _ Nil = Nil

-- | /O(n)/. Map values and separate the 'Left' and 'Right' results.
--
-- > let f a = if a < "c" then Left a else Right a
-- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])
-- >
-- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEither f m
  = mapEitherWithKey (\_ x -> f x) m

-- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results.
--
-- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)
-- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])
-- >
-- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])

mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEitherWithKey f0 t0 = toPair $ go f0 t0
  where
    go f (Bin p m l r)
      = bin p m l1 r1 :*: bin p m l2 r2
      where
        (l1 :*: l2) = go f l
        (r1 :*: r2) = go f r
    go f (Tip k x) = case f k x of
      Left y  -> (Tip k y :*: Nil)
      Right z -> (Nil :*: Tip k z)
    go _ Nil = (Nil :*: Nil)

-- | /O(min(n,W))/. The expression (@'split' k map@) is a pair @(map1,map2)@
-- where all keys in @map1@ are lower than @k@ and all keys in
-- @map2@ larger than @k@. Any key equal to @k@ is found in neither @map1@ nor @map2@.
--
-- > split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")])
-- > split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a")
-- > split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")
-- > split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty)
-- > split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)

split :: Key -> IntMap a -> (IntMap a, IntMap a)
split k t =
  case t of
      Bin _ m l r
          | m < 0 -> if k >= 0 -- handle negative numbers.
                     then case go k l of (lt :*: gt) -> let lt' = union r lt 
                                                        in lt' `seq` (lt', gt)
                     else case go k r of (lt :*: gt) -> let gt' = union gt l
                                                        in gt' `seq` (lt, gt')
      _ -> case go k t of
          (lt :*: gt) -> (lt, gt)
  where
    go k' t'@(Bin p m l r) | nomatch k' p m = if k' > p then t' :*: Nil else Nil :*: t'
                           | zero k' m = case go k' l of (lt :*: gt) -> lt :*: union gt r
                           | otherwise = case go k' r of (lt :*: gt) -> union l lt :*: gt
    go k' t'@(Tip ky _) | k' > ky   = (t' :*: Nil)
                        | k' < ky   = (Nil :*: t')
                        | otherwise = (Nil :*: Nil)
    go _ Nil = (Nil :*: Nil)

-- | /O(min(n,W))/. Performs a 'split' but also returns whether the pivot
-- key was found in the original map.
--
-- > splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")])
-- > splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a")
-- > splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a")
-- > splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty)
-- > splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)

splitLookup :: Key -> IntMap a -> (IntMap a, Maybe a, IntMap a)
splitLookup k t =
  case t of
      Bin _ m l r
          | m < 0 -> if k >= 0 -- handle negative numbers.
                     then case go k l of
                         (lt, fnd, gt) -> let lt' = union r lt
                                          in lt' `seq` (lt', fnd, gt)
                     else case go k r of
                         (lt, fnd, gt) -> let gt' = union gt l
                                          in gt' `seq` (lt, fnd, gt')
      _ -> go k t
  where
    go k' t'@(Bin p m l r)
        | nomatch k' p m = if k' > p then (t', Nothing, Nil) else (Nil, Nothing, t')
        | zero k' m      = case go k' l of
            (lt, fnd, gt) -> let gt' = union gt r in gt' `seq` (lt, fnd, gt')
        | otherwise      = case go k' r of
            (lt, fnd, gt) -> let lt' = union l lt in lt' `seq` (lt', fnd, gt)
    go k' t'@(Tip ky y) | k' > ky   = (t', Nothing, Nil)
                        | k' < ky   = (Nil, Nothing, t')
                        | otherwise = (Nil, Just y, Nil)
    go _ Nil = (Nil, Nothing, Nil)

{--------------------------------------------------------------------
  Fold
--------------------------------------------------------------------}
-- | /O(n)/. Fold the values in the map using the given right-associative
-- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'elems'@.
--
-- For example,
--
-- > elems map = foldr (:) [] map
--
-- > let f a len = len + (length a)
-- > foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldr :: (a -> b -> b) -> b -> IntMap a -> b
foldr f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before
                        | otherwise -> go (go z r) l
            _ -> go z t
  where
    go z' Nil           = z'
    go z' (Tip _ x)     = f x z'
    go z' (Bin _ _ l r) = go (go z' r) l
{-# INLINE foldr #-}

-- | /O(n)/. A strict version of 'foldr'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldr' :: (a -> b -> b) -> b -> IntMap a -> b
foldr' f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before
                        | otherwise -> go (go z r) l
            _ -> go z t
  where
    STRICT_1_OF_2(go)
    go z' Nil           = z'
    go z' (Tip _ x)     = f x z'
    go z' (Bin _ _ l r) = go (go z' r) l
{-# INLINE foldr' #-}

-- | /O(n)/. Fold the values in the map using the given left-associative
-- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'elems'@.
--
-- For example,
--
-- > elems = reverse . foldl (flip (:)) []
--
-- > let f len a = len + (length a)
-- > foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldl :: (a -> b -> a) -> a -> IntMap b -> a
foldl f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before
                        | otherwise -> go (go z l) r
            _ -> go z t
  where
    go z' Nil           = z'
    go z' (Tip _ x)     = f z' x
    go z' (Bin _ _ l r) = go (go z' l) r
{-# INLINE foldl #-}

-- | /O(n)/. A strict version of 'foldl'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldl' :: (a -> b -> a) -> a -> IntMap b -> a
foldl' f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before
                        | otherwise -> go (go z l) r
            _ -> go z t
  where
    STRICT_1_OF_2(go)
    go z' Nil           = z'
    go z' (Tip _ x)     = f z' x
    go z' (Bin _ _ l r) = go (go z' l) r
{-# INLINE foldl' #-}

-- | /O(n)/. Fold the keys and values in the map using the given right-associative
-- binary operator, such that
-- @'foldrWithKey' f z == 'Prelude.foldr' ('uncurry' f) z . 'toAscList'@.
--
-- For example,
--
-- > keys map = foldrWithKey (\k x ks -> k:ks) [] map
--
-- > let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"
-- > foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"
foldrWithKey :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before
                        | otherwise -> go (go z r) l
            _ -> go z t
  where
    go z' Nil           = z'
    go z' (Tip kx x)    = f kx x z'
    go z' (Bin _ _ l r) = go (go z' r) l
{-# INLINE foldrWithKey #-}

-- | /O(n)/. A strict version of 'foldrWithKey'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldrWithKey' :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey' f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before
                        | otherwise -> go (go z r) l
            _ -> go z t
  where
    STRICT_1_OF_2(go)
    go z' Nil           = z'
    go z' (Tip kx x)    = f kx x z'
    go z' (Bin _ _ l r) = go (go z' r) l
{-# INLINE foldrWithKey' #-}

-- | /O(n)/. Fold the keys and values in the map using the given left-associative
-- binary operator, such that
-- @'foldlWithKey' f z == 'Prelude.foldl' (\\z' (kx, x) -> f z' kx x) z . 'toAscList'@.
--
-- For example,
--
-- > keys = reverse . foldlWithKey (\ks k x -> k:ks) []
--
-- > let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"
-- > foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"
foldlWithKey :: (a -> Key -> b -> a) -> a -> IntMap b -> a
foldlWithKey f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before
                        | otherwise -> go (go z l) r
            _ -> go z t
  where
    go z' Nil           = z'
    go z' (Tip kx x)    = f z' kx x
    go z' (Bin _ _ l r) = go (go z' l) r
{-# INLINE foldlWithKey #-}

-- | /O(n)/. A strict version of 'foldlWithKey'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldlWithKey' :: (a -> Key -> b -> a) -> a -> IntMap b -> a
foldlWithKey' f z = \t ->      -- Use lambda t to be inlinable with two arguments only.
  case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before
                        | otherwise -> go (go z l) r
            _ -> go z t
  where
    STRICT_1_OF_2(go)
    go z' Nil           = z'
    go z' (Tip kx x)    = f z' kx x
    go z' (Bin _ _ l r) = go (go z' l) r
{-# INLINE foldlWithKey' #-}

-- | /O(n)/. Fold the keys and values in the map using the given monoid, such that
--
-- @'foldMapWithKey' f = 'Prelude.fold' . 'mapWithKey' f@
--
-- This can be an asymptotically faster than 'foldrWithKey' or 'foldlWithKey' for some monoids.
foldMapWithKey :: Monoid m => (Key -> a -> m) -> IntMap a -> m
foldMapWithKey f = go
  where
    go Nil           = mempty
    go (Tip kx x)    = f kx x
    go (Bin _ _ l r) = go l `mappend` go r
{-# INLINE foldMapWithKey #-}

{--------------------------------------------------------------------
  List variations
--------------------------------------------------------------------}
-- | /O(n)/.
-- Return all elements of the map in the ascending order of their keys.
-- Subject to list fusion.
--
-- > elems (fromList [(5,"a"), (3,"b")]) == ["b","a"]
-- > elems empty == []

elems :: IntMap a -> [a]
elems = foldr (:) []

-- | /O(n)/. Return all keys of the map in ascending order. Subject to list
-- fusion.
--
-- > keys (fromList [(5,"a"), (3,"b")]) == [3,5]
-- > keys empty == []

keys  :: IntMap a -> [Key]
keys = foldrWithKey (\k _ ks -> k : ks) []

-- | /O(n)/. An alias for 'toAscList'. Returns all key\/value pairs in the
-- map in ascending key order. Subject to list fusion.
--
-- > assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]
-- > assocs empty == []

assocs :: IntMap a -> [(Key,a)]
assocs = toAscList

-- | /O(n*min(n,W))/. The set of all keys of the map.
--
-- > keysSet (fromList [(5,"a"), (3,"b")]) == Data.IntSet.fromList [3,5]
-- > keysSet empty == Data.IntSet.empty

keysSet :: IntMap a -> IntSet.IntSet
keysSet Nil = IntSet.Nil
keysSet (Tip kx _) = IntSet.singleton kx
keysSet (Bin p m l r)
  | m .&. IntSet.suffixBitMask == 0 = IntSet.Bin p m (keysSet l) (keysSet r)
  | otherwise = IntSet.Tip (p .&. IntSet.prefixBitMask) (computeBm (computeBm 0 l) r)
  where STRICT_1_OF_2(computeBm)
        computeBm acc (Bin _ _ l' r') = computeBm (computeBm acc l') r'
        computeBm acc (Tip kx _) = acc .|. IntSet.bitmapOf kx
        computeBm _   Nil = error "Data.IntSet.keysSet: Nil"

-- | /O(n)/. Build a map from a set of keys and a function which for each key
-- computes its value.
--
-- > fromSet (\k -> replicate k 'a') (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]
-- > fromSet undefined Data.IntSet.empty == empty

fromSet :: (Key -> a) -> IntSet.IntSet -> IntMap a
fromSet _ IntSet.Nil = Nil
fromSet f (IntSet.Bin p m l r) = Bin p m (fromSet f l) (fromSet f r)
fromSet f (IntSet.Tip kx bm) = buildTree f kx bm (IntSet.suffixBitMask + 1)
  where -- This is slightly complicated, as we to convert the dense
        -- representation of IntSet into tree representation of IntMap.
        --
        -- We are given a nonzero bit mask 'bmask' of 'bits' bits with prefix 'prefix'.
        -- We split bmask into halves corresponding to left and right subtree.
        -- If they are both nonempty, we create a Bin node, otherwise exactly
        -- one of them is nonempty and we construct the IntMap from that half.
        buildTree g prefix bmask bits = prefix `seq` bmask `seq` case bits of
          0 -> Tip prefix (g prefix)
          _ -> case intFromNat ((natFromInt bits) `shiftRL` 1) of
                 bits2 | bmask .&. ((1 `shiftLL` bits2) - 1) == 0 ->
                           buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2
                       | (bmask `shiftRL` bits2) .&. ((1 `shiftLL` bits2) - 1) == 0 ->
                           buildTree g prefix bmask bits2
                       | otherwise ->
                           Bin prefix bits2 (buildTree g prefix bmask bits2) (buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2)

{--------------------------------------------------------------------
  Lists
--------------------------------------------------------------------}
#if __GLASGOW_HASKELL__ >= 708
instance GHCExts.IsList (IntMap a) where
  type Item (IntMap a) = (Key,a)
  fromList = fromList
  toList   = toList
#endif

-- | /O(n)/. Convert the map to a list of key\/value pairs. Subject to list
-- fusion.
--
-- > toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]
-- > toList empty == []

toList :: IntMap a -> [(Key,a)]
toList = toAscList

-- | /O(n)/. Convert the map to a list of key\/value pairs where the
-- keys are in ascending order. Subject to list fusion.
--
-- > toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toAscList :: IntMap a -> [(Key,a)]
toAscList = foldrWithKey (\k x xs -> (k,x):xs) []

-- | /O(n)/. Convert the map to a list of key\/value pairs where the keys
-- are in descending order. Subject to list fusion.
--
-- > toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]

toDescList :: IntMap a -> [(Key,a)]
toDescList = foldlWithKey (\xs k x -> (k,x):xs) []

-- List fusion for the list generating functions.
#if __GLASGOW_HASKELL__
-- The foldrFB and foldlFB are fold{r,l}WithKey equivalents, used for list fusion.
-- They are important to convert unfused methods back, see mapFB in prelude.
foldrFB :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldrFB = foldrWithKey
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> Key -> b -> a) -> a -> IntMap b -> a
foldlFB = foldlWithKey
{-# INLINE[0] foldlFB #-}

-- Inline assocs and toList, so that we need to fuse only toAscList.
{-# INLINE assocs #-}
{-# INLINE toList #-}

-- The fusion is enabled up to phase 2 included. If it does not succeed,
-- convert in phase 1 the expanded elems,keys,to{Asc,Desc}List calls back to
-- elems,keys,to{Asc,Desc}List.  In phase 0, we inline fold{lr}FB (which were
-- used in a list fusion, otherwise it would go away in phase 1), and let compiler
-- do whatever it wants with elems,keys,to{Asc,Desc}List -- it was forbidden to
-- inline it before phase 0, otherwise the fusion rules would not fire at all.
{-# NOINLINE[0] elems #-}
{-# NOINLINE[0] keys #-}
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "IntMap.elems" [~1] forall m . elems m = build (\c n -> foldrFB (\_ x xs -> c x xs) n m) #-}
{-# RULES "IntMap.elemsBack" [1] foldrFB (\_ x xs -> x : xs) [] = elems #-}
{-# RULES "IntMap.keys" [~1] forall m . keys m = build (\c n -> foldrFB (\k _ xs -> c k xs) n m) #-}
{-# RULES "IntMap.keysBack" [1] foldrFB (\k _ xs -> k : xs) [] = keys #-}
{-# RULES "IntMap.toAscList" [~1] forall m . toAscList m = build (\c n -> foldrFB (\k x xs -> c (k,x) xs) n m) #-}
{-# RULES "IntMap.toAscListBack" [1] foldrFB (\k x xs -> (k, x) : xs) [] = toAscList #-}
{-# RULES "IntMap.toDescList" [~1] forall m . toDescList m = build (\c n -> foldlFB (\xs k x -> c (k,x) xs) n m) #-}
{-# RULES "IntMap.toDescListBack" [1] foldlFB (\xs k x -> (k, x) : xs) [] = toDescList #-}
#endif


-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs.
--
-- > fromList [] == empty
-- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
-- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromList :: [(Key,a)] -> IntMap a
fromList xs
  = foldlStrict ins empty xs
  where
    ins t (k,x)  = insert k x t

-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'.
--
-- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "ab"), (5, "cba")]
-- > fromListWith (++) [] == empty

fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWith f xs
  = fromListWithKey (\_ x y -> f x y) xs

-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs with a combining function. See also fromAscListWithKey'.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "3:a|b"), (5, "5:c|5:b|a")]
-- > fromListWithKey f [] == empty

fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWithKey f xs
  = foldlStrict ins empty xs
  where
    ins t (k,x) = insertWithKey f k x t

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order.
--
-- > fromAscList [(3,"b"), (5,"a")]          == fromList [(3, "b"), (5, "a")]
-- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]

fromAscList :: [(Key,a)] -> IntMap a
fromAscList xs
  = fromAscListWithKey (\_ x _ -> x) xs

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWith f xs
  = fromAscListWithKey (\_ x y -> f x y) xs

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "5:b|a")]

fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWithKey _ []         = Nil
fromAscListWithKey f (x0 : xs0) = fromDistinctAscList (combineEq x0 xs0)
  where
    -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs]
    combineEq z [] = [z]
    combineEq z@(kz,zz) (x@(kx,xx):xs)
      | kx==kz    = let yy = f kx xx zz in combineEq (kx,yy) xs
      | otherwise = z:combineEq x xs

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order and all distinct.
-- /The precondition (input list is strictly ascending) is not checked./
--
-- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

fromDistinctAscList :: forall a. [(Key,a)] -> IntMap a
fromDistinctAscList []         = Nil
fromDistinctAscList (z0 : zs0) = work z0 zs0 Nada
  where
    work (kx,vx) []            stk = finish kx (Tip kx vx) stk
    work (kx,vx) (z@(kz,_):zs) stk = reduce z zs (branchMask kx kz) kx (Tip kx vx) stk

    reduce :: (Key,a) -> [(Key,a)] -> Mask -> Prefix -> IntMap a -> Stack a -> IntMap a
    reduce z zs _ px tx Nada = work z zs (Push px tx Nada)
    reduce z zs m px tx stk@(Push py ty stk') =
        let mxy = branchMask px py
            pxy = mask px mxy
        in  if shorter m mxy
                 then reduce z zs m pxy (Bin pxy mxy ty tx) stk'
                 else work z zs (Push px tx stk)

    finish _  t  Nada = t
    finish px tx (Push py ty stk) = finish p (link py ty px tx) stk
        where m = branchMask px py
              p = mask px m

data Stack a = Push {-# UNPACK #-} !Prefix !(IntMap a) !(Stack a) | Nada


{--------------------------------------------------------------------
  Eq
--------------------------------------------------------------------}
instance Eq a => Eq (IntMap a) where
  t1 == t2  = equal t1 t2
  t1 /= t2  = nequal t1 t2

equal :: Eq a => IntMap a -> IntMap a -> Bool
equal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
  = (m1 == m2) && (p1 == p2) && (equal l1 l2) && (equal r1 r2)
equal (Tip kx x) (Tip ky y)
  = (kx == ky) && (x==y)
equal Nil Nil = True
equal _   _   = False

nequal :: Eq a => IntMap a -> IntMap a -> Bool
nequal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
  = (m1 /= m2) || (p1 /= p2) || (nequal l1 l2) || (nequal r1 r2)
nequal (Tip kx x) (Tip ky y)
  = (kx /= ky) || (x/=y)
nequal Nil Nil = False
nequal _   _   = True

{--------------------------------------------------------------------
  Ord
--------------------------------------------------------------------}

instance Ord a => Ord (IntMap a) where
    compare m1 m2 = compare (toList m1) (toList m2)

{--------------------------------------------------------------------
  Functor
--------------------------------------------------------------------}

instance Functor IntMap where
    fmap = map

{--------------------------------------------------------------------
  Show
--------------------------------------------------------------------}

instance Show a => Show (IntMap a) where
  showsPrec d m   = showParen (d > 10) $
    showString "fromList " . shows (toList m)

{--------------------------------------------------------------------
  Read
--------------------------------------------------------------------}
instance (Read e) => Read (IntMap e) where
#ifdef __GLASGOW_HASKELL__
  readPrec = parens $ prec 10 $ do
    Ident "fromList" <- lexP
    xs <- readPrec
    return (fromList xs)

  readListPrec = readListPrecDefault
#else
  readsPrec p = readParen (p > 10) $ \ r -> do
    ("fromList",s) <- lex r
    (xs,t) <- reads s
    return (fromList xs,t)
#endif

{--------------------------------------------------------------------
  Typeable
--------------------------------------------------------------------}

INSTANCE_TYPEABLE1(IntMap,intMapTc,"IntMap")

{--------------------------------------------------------------------
  Helpers
--------------------------------------------------------------------}
{--------------------------------------------------------------------
  Link
--------------------------------------------------------------------}
link :: Prefix -> IntMap a -> Prefix -> IntMap a -> IntMap a
link p1 t1 p2 t2
  | zero p1 m = Bin p m t1 t2
  | otherwise = Bin p m t2 t1
  where
    m = branchMask p1 p2
    p = mask p1 m
{-# INLINE link #-}

{--------------------------------------------------------------------
  @bin@ assures that we never have empty trees within a tree.
--------------------------------------------------------------------}
bin :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a
bin _ _ l Nil = l
bin _ _ Nil r = r
bin p m l r   = Bin p m l r
{-# INLINE bin #-}


{--------------------------------------------------------------------
  Endian independent bit twiddling
--------------------------------------------------------------------}
zero :: Key -> Mask -> Bool
zero i m
  = (natFromInt i) .&. (natFromInt m) == 0
{-# INLINE zero #-}

nomatch,match :: Key -> Prefix -> Mask -> Bool
nomatch i p m
  = (mask i m) /= p
{-# INLINE nomatch #-}

match i p m
  = (mask i m) == p
{-# INLINE match #-}

mask :: Key -> Mask -> Prefix
mask i m
  = maskW (natFromInt i) (natFromInt m)
{-# INLINE mask #-}


{--------------------------------------------------------------------
  Big endian operations
--------------------------------------------------------------------}
maskW :: Nat -> Nat -> Prefix
maskW i m
  = intFromNat (i .&. (complement (m-1) `xor` m))
{-# INLINE maskW #-}

shorter :: Mask -> Mask -> Bool
shorter m1 m2
  = (natFromInt m1) > (natFromInt m2)
{-# INLINE shorter #-}

branchMask :: Prefix -> Prefix -> Mask
branchMask p1 p2
  = intFromNat (highestBitMask (natFromInt p1 `xor` natFromInt p2))
{-# INLINE branchMask #-}

{--------------------------------------------------------------------
  Utilities
--------------------------------------------------------------------}

-- | /O(1)/.  Decompose a map into pieces based on the structure of the underlying
-- tree.  This function is useful for consuming a map in parallel.
--
-- No guarantee is made as to the sizes of the pieces; an internal, but
-- deterministic process determines this.  However, it is guaranteed that the
-- pieces returned will be in ascending order (all elements in the first submap
-- less than all elements in the second, and so on).
--
-- Examples:
--
-- > splitRoot (fromList (zip [1..6::Int] ['a'..])) ==
-- >   [fromList [(1,'a'),(2,'b'),(3,'c')],fromList [(4,'d'),(5,'e'),(6,'f')]]
--
-- > splitRoot empty == []
--
--  Note that the current implementation does not return more than two submaps,
--  but you should not depend on this behaviour because it can change in the
--  future without notice.
splitRoot :: IntMap a -> [IntMap a]
splitRoot orig =
  case orig of
    Nil -> []
    x@(Tip _ _) -> [x]
    Bin _ m l r | m < 0 -> [r, l]
                | otherwise -> [l, r]
{-# INLINE splitRoot #-}


{--------------------------------------------------------------------
  Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the map. The tree is shown
-- in a compressed, hanging format.
showTree :: Show a => IntMap a -> String
showTree s
  = showTreeWith True False s


{- | /O(n)/. The expression (@'showTreeWith' hang wide map@) shows
 the tree that implements the map. If @hang@ is
 'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If
 @wide@ is 'True', an extra wide version is shown.
-}
showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String
showTreeWith hang wide t
  | hang      = (showsTreeHang wide [] t) ""
  | otherwise = (showsTree wide [] [] t) ""

showsTree :: Show a => Bool -> [String] -> [String] -> IntMap a -> ShowS
showsTree wide lbars rbars t
  = case t of
      Bin p m l r
          -> showsTree wide (withBar rbars) (withEmpty rbars) r .
             showWide wide rbars .
             showsBars lbars . showString (showBin p m) . showString "\n" .
             showWide wide lbars .
             showsTree wide (withEmpty lbars) (withBar lbars) l
      Tip k x
          -> showsBars lbars . showString " " . shows k . showString ":=" . shows x . showString "\n"
      Nil -> showsBars lbars . showString "|\n"

showsTreeHang :: Show a => Bool -> [String] -> IntMap a -> ShowS
showsTreeHang wide bars t
  = case t of
      Bin p m l r
          -> showsBars bars . showString (showBin p m) . showString "\n" .
             showWide wide bars .
             showsTreeHang wide (withBar bars) l .
             showWide wide bars .
             showsTreeHang wide (withEmpty bars) r
      Tip k x
          -> showsBars bars . showString " " . shows k . showString ":=" . shows x . showString "\n"
      Nil -> showsBars bars . showString "|\n"

showBin :: Prefix -> Mask -> String
showBin _ _
  = "*" -- ++ show (p,m)

showWide :: Bool -> [String] -> String -> String
showWide wide bars
  | wide      = showString (concat (reverse bars)) . showString "|\n"
  | otherwise = id

showsBars :: [String] -> ShowS
showsBars bars
  = case bars of
      [] -> id
      _  -> showString (concat (reverse (tail bars))) . showString node

node :: String
node           = "+--"

withBar, withEmpty :: [String] -> [String]
withBar bars   = "|  ":bars
withEmpty bars = "   ":bars