1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
|
{-# LANGUAGE CPP #-}
#if !defined(TESTING) && __GLASGOW_HASKELL__ >= 703
{-# LANGUAGE Trustworthy #-}
#endif
#include "containers.h"
-----------------------------------------------------------------------------
-- |
-- Module : Data.IntMap.Strict
-- Copyright : (c) Daan Leijen 2002
-- (c) Andriy Palamarchuk 2008
-- License : BSD-style
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- An efficient implementation of maps from integer keys to values
-- (dictionaries).
--
-- API of this module is strict in both the keys and the values.
-- If you need value-lazy maps, use "Data.IntMap.Lazy" instead.
-- The 'IntMap' type itself is shared between the lazy and strict modules,
-- meaning that the same 'IntMap' value can be passed to functions in
-- both modules (although that is rarely needed).
--
-- These modules are intended to be imported qualified, to avoid name
-- clashes with Prelude functions, e.g.
--
-- > import Data.IntMap.Strict (IntMap)
-- > import qualified Data.IntMap.Strict as IntMap
--
-- The implementation is based on /big-endian patricia trees/. This data
-- structure performs especially well on binary operations like 'union'
-- and 'intersection'. However, my benchmarks show that it is also
-- (much) faster on insertions and deletions when compared to a generic
-- size-balanced map implementation (see "Data.Map").
--
-- * Chris Okasaki and Andy Gill, \"/Fast Mergeable Integer Maps/\",
-- Workshop on ML, September 1998, pages 77-86,
-- <http://citeseer.ist.psu.edu/okasaki98fast.html>
--
-- * D.R. Morrison, \"/PATRICIA -- Practical Algorithm To Retrieve
-- Information Coded In Alphanumeric/\", Journal of the ACM, 15(4),
-- October 1968, pages 514-534.
--
-- Operation comments contain the operation time complexity in
-- the Big-O notation <http://en.wikipedia.org/wiki/Big_O_notation>.
-- Many operations have a worst-case complexity of /O(min(n,W))/.
-- This means that the operation can become linear in the number of
-- elements with a maximum of /W/ -- the number of bits in an 'Int'
-- (32 or 64).
--
-- Be aware that the 'Functor', 'Traversable' and 'Data' instances
-- are the same as for the "Data.IntMap.Lazy" module, so if they are used
-- on strict maps, the resulting maps will be lazy.
-----------------------------------------------------------------------------
-- See the notes at the beginning of Data.IntMap.Base.
module Data.IntMap.Strict (
-- * Strictness properties
-- $strictness
-- * Map type
#if !defined(TESTING)
IntMap, Key -- instance Eq,Show
#else
IntMap(..), Key -- instance Eq,Show
#endif
-- * Operators
, (!), (\\)
-- * Query
, null
, size
, member
, notMember
, lookup
, findWithDefault
, lookupLT
, lookupGT
, lookupLE
, lookupGE
-- * Construction
, empty
, singleton
-- ** Insertion
, insert
, insertWith
, insertWithKey
, insertLookupWithKey
-- ** Delete\/Update
, delete
, adjust
, adjustWithKey
, update
, updateWithKey
, updateLookupWithKey
, alter
-- * Combine
-- ** Union
, union
, unionWith
, unionWithKey
, unions
, unionsWith
-- ** Difference
, difference
, differenceWith
, differenceWithKey
-- ** Intersection
, intersection
, intersectionWith
, intersectionWithKey
-- ** Universal combining function
, mergeWithKey
-- * Traversal
-- ** Map
, map
, mapWithKey
, traverseWithKey
, mapAccum
, mapAccumWithKey
, mapAccumRWithKey
, mapKeys
, mapKeysWith
, mapKeysMonotonic
-- * Folds
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
-- ** Strict folds
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
-- * Conversion
, elems
, keys
, assocs
, keysSet
, fromSet
-- ** Lists
, toList
, fromList
, fromListWith
, fromListWithKey
-- ** Ordered lists
, toAscList
, toDescList
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList
-- * Filter
, filter
, filterWithKey
, partition
, partitionWithKey
, mapMaybe
, mapMaybeWithKey
, mapEither
, mapEitherWithKey
, split
, splitLookup
, splitRoot
-- * Submap
, isSubmapOf, isSubmapOfBy
, isProperSubmapOf, isProperSubmapOfBy
-- * Min\/Max
, findMin
, findMax
, deleteMin
, deleteMax
, deleteFindMin
, deleteFindMax
, updateMin
, updateMax
, updateMinWithKey
, updateMaxWithKey
, minView
, maxView
, minViewWithKey
, maxViewWithKey
-- * Debugging
, showTree
, showTreeWith
) where
import Prelude hiding (lookup,map,filter,foldr,foldl,null)
import Data.Bits
import Data.IntMap.Base hiding
( findWithDefault
, singleton
, insert
, insertWith
, insertWithKey
, insertLookupWithKey
, adjust
, adjustWithKey
, update
, updateWithKey
, updateLookupWithKey
, alter
, unionsWith
, unionWith
, unionWithKey
, differenceWith
, differenceWithKey
, intersectionWith
, intersectionWithKey
, mergeWithKey
, updateMinWithKey
, updateMaxWithKey
, updateMax
, updateMin
, map
, mapWithKey
, mapAccum
, mapAccumWithKey
, mapAccumRWithKey
, mapKeysWith
, mapMaybe
, mapMaybeWithKey
, mapEither
, mapEitherWithKey
, fromSet
, fromList
, fromListWith
, fromListWithKey
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList
)
import qualified Data.IntSet.Base as IntSet
import Data.Utils.BitUtil
import Data.Utils.StrictFold
import Data.Utils.StrictPair
#if __GLASGOW_HASKELL__ >= 709
import Data.Coerce
#endif
-- $strictness
--
-- This module satisfies the following strictness properties:
--
-- 1. Key arguments are evaluated to WHNF;
--
-- 2. Keys and values are evaluated to WHNF before they are stored in
-- the map.
--
-- Here's an example illustrating the first property:
--
-- > delete undefined m == undefined
--
-- Here are some examples that illustrate the second property:
--
-- > map (\ v -> undefined) m == undefined -- m is not empty
-- > mapKeys (\ k -> undefined) m == undefined -- m is not empty
{--------------------------------------------------------------------
Query
--------------------------------------------------------------------}
-- | /O(min(n,W))/. The expression @('findWithDefault' def k map)@
-- returns the value at key @k@ or returns @def@ when the key is not an
-- element of the map.
--
-- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
-- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'
-- See IntMap.Base.Note: Local 'go' functions and capturing]
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault def k = k `seq` go
where
go (Bin p m l r) | nomatch k p m = def
| zero k m = go l
| otherwise = go r
go (Tip kx x) | k == kx = x
| otherwise = def
go Nil = def
{--------------------------------------------------------------------
Construction
--------------------------------------------------------------------}
-- | /O(1)/. A map of one element.
--
-- > singleton 1 'a' == fromList [(1, 'a')]
-- > size (singleton 1 'a') == 1
singleton :: Key -> a -> IntMap a
singleton k x
= x `seq` Tip k x
{-# INLINE singleton #-}
{--------------------------------------------------------------------
Insert
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Insert a new key\/value pair in the map.
-- If the key is already present in the map, the associated value is
-- replaced with the supplied value, i.e. 'insert' is equivalent to
-- @'insertWith' 'const'@.
--
-- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')]
-- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')]
-- > insert 5 'x' empty == singleton 5 'x'
insert :: Key -> a -> IntMap a -> IntMap a
insert k x t = k `seq` x `seq`
case t of
Bin p m l r
| nomatch k p m -> link k (Tip k x) p t
| zero k m -> Bin p m (insert k x l) r
| otherwise -> Bin p m l (insert k x r)
Tip ky _
| k==ky -> Tip k x
| otherwise -> link k (Tip k x) ky t
Nil -> Tip k x
-- right-biased insertion, used by 'union'
-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWith' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f new_value old_value@.
--
-- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]
-- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWith (++) 5 "xxx" empty == singleton 5 "xxx"
insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith f k x t
= insertWithKey (\_ x' y' -> f x' y') k x t
-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWithKey' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f key new_value old_value@.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]
-- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWithKey f 5 "xxx" empty == singleton 5 "xxx"
--
-- If the key exists in the map, this function is lazy in @x@ but strict
-- in the result of @f@.
insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey f k x t = k `seq`
case t of
Bin p m l r
| nomatch k p m -> link k (singleton k x) p t
| zero k m -> Bin p m (insertWithKey f k x l) r
| otherwise -> Bin p m l (insertWithKey f k x r)
Tip ky y
| k==ky -> Tip k $! f k x y
| otherwise -> link k (singleton k x) ky t
Nil -> singleton k x
-- | /O(min(n,W))/. The expression (@'insertLookupWithKey' f k x map@)
-- is a pair where the first element is equal to (@'lookup' k map@)
-- and the second element equal to (@'insertWithKey' f k x map@).
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])
-- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")])
-- > insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")
--
-- This is how to define @insertLookup@ using @insertLookupWithKey@:
--
-- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t
-- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])
-- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])
insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey f0 k0 x0 t0 = k0 `seq` toPair $ go f0 k0 x0 t0
where
go f k x t =
case t of
Bin p m l r
| nomatch k p m -> Nothing :*: link k (singleton k x) p t
| zero k m -> let (found :*: l') = go f k x l in (found :*: Bin p m l' r)
| otherwise -> let (found :*: r') = go f k x r in (found :*: Bin p m l r')
Tip ky y
| k==ky -> (Just y :*: (Tip k $! f k x y))
| otherwise -> (Nothing :*: link k (singleton k x) ky t)
Nil -> Nothing :*: (singleton k x)
{--------------------------------------------------------------------
Deletion
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjust ("new " ++) 7 empty == empty
adjust :: (a -> a) -> Key -> IntMap a -> IntMap a
adjust f k m
= adjustWithKey (\_ x -> f x) k m
-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > let f key x = (show key) ++ ":new " ++ x
-- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjustWithKey f 7 empty == empty
adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey f
= updateWithKey (\k' x -> Just (f k' x))
-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update f
= updateWithKey (\_ x -> f x)
-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey f k t = k `seq`
case t of
Bin p m l r
| nomatch k p m -> t
| zero k m -> bin p m (updateWithKey f k l) r
| otherwise -> bin p m l (updateWithKey f k r)
Tip ky y
| k==ky -> case f k y of
Just y' -> y' `seq` Tip ky y'
Nothing -> Nil
| otherwise -> t
Nil -> Nil
-- | /O(min(n,W))/. Lookup and update.
-- The function returns original value, if it is updated.
-- This is different behavior than 'Data.Map.updateLookupWithKey'.
-- Returns the original key value if the map entry is deleted.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")])
-- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")])
-- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")
updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey f0 k0 t0 = k0 `seq` toPair $ go f0 k0 t0
where
go f k t =
case t of
Bin p m l r
| nomatch k p m -> (Nothing :*: t)
| zero k m -> let (found :*: l') = go f k l in (found :*: bin p m l' r)
| otherwise -> let (found :*: r') = go f k r in (found :*: bin p m l r')
Tip ky y
| k==ky -> case f k y of
Just y' -> y' `seq` (Just y :*: Tip ky y')
Nothing -> (Just y :*: Nil)
| otherwise -> (Nothing :*: t)
Nil -> (Nothing :*: Nil)
-- | /O(min(n,W))/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof.
-- 'alter' can be used to insert, delete, or update a value in an 'IntMap'.
-- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter f k t = k `seq`
case t of
Bin p m l r
| nomatch k p m -> case f Nothing of
Nothing -> t
Just x -> x `seq` link k (Tip k x) p t
| zero k m -> bin p m (alter f k l) r
| otherwise -> bin p m l (alter f k r)
Tip ky y
| k==ky -> case f (Just y) of
Just x -> x `seq` Tip ky x
Nothing -> Nil
| otherwise -> case f Nothing of
Just x -> x `seq` link k (Tip k x) ky t
Nothing -> t
Nil -> case f Nothing of
Just x -> x `seq` Tip k x
Nothing -> Nil
{--------------------------------------------------------------------
Union
--------------------------------------------------------------------}
-- | The union of a list of maps, with a combining operation.
--
-- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- > == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]
unionsWith :: (a->a->a) -> [IntMap a] -> IntMap a
unionsWith f ts
= foldlStrict (unionWith f) empty ts
-- | /O(n+m)/. The union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]
unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith f m1 m2
= unionWithKey (\_ x y -> f x y) m1 m2
-- | /O(n+m)/. The union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
-- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]
unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey f m1 m2
= mergeWithKey' Bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 $! f k1 x1 x2) id id m1 m2
{--------------------------------------------------------------------
Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference with a combining function.
--
-- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing
-- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])
-- > == singleton 3 "b:B"
differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith f m1 m2
= differenceWithKey (\_ x y -> f x y) m1 m2
-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns 'Nothing', the element is discarded (proper set difference).
-- If it returns (@'Just' y@), the element is updated with a new value @y@.
--
-- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing
-- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])
-- > == singleton 3 "3:b|B"
differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey f m1 m2
= mergeWithKey f id (const Nil) m1 m2
{--------------------------------------------------------------------
Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"
intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith f m1 m2
= intersectionWithKey (\_ x y -> f x y) m1 m2
-- | /O(n+m)/. The intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"
intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey f m1 m2
= mergeWithKey' bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 $! f k1 x1 x2) (const Nil) (const Nil) m1 m2
{--------------------------------------------------------------------
MergeWithKey
--------------------------------------------------------------------}
-- | /O(n+m)/. A high-performance universal combining function. Using
-- 'mergeWithKey', all combining functions can be defined without any loss of
-- efficiency (with exception of 'union', 'difference' and 'intersection',
-- where sharing of some nodes is lost with 'mergeWithKey').
--
-- Please make sure you know what is going on when using 'mergeWithKey',
-- otherwise you can be surprised by unexpected code growth or even
-- corruption of the data structure.
--
-- When 'mergeWithKey' is given three arguments, it is inlined to the call
-- site. You should therefore use 'mergeWithKey' only to define your custom
-- combining functions. For example, you could define 'unionWithKey',
-- 'differenceWithKey' and 'intersectionWithKey' as
--
-- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2
-- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2
-- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
--
-- When calling @'mergeWithKey' combine only1 only2@, a function combining two
-- 'IntMap's is created, such that
--
-- * if a key is present in both maps, it is passed with both corresponding
-- values to the @combine@ function. Depending on the result, the key is either
-- present in the result with specified value, or is left out;
--
-- * a nonempty subtree present only in the first map is passed to @only1@ and
-- the output is added to the result;
--
-- * a nonempty subtree present only in the second map is passed to @only2@ and
-- the output is added to the result.
--
-- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/.
-- The values can be modified arbitrarily. Most common variants of @only1@ and
-- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or
-- @'filterWithKey' f@ could be used for any @f@.
mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
-> IntMap a -> IntMap b -> IntMap c
mergeWithKey f g1 g2 = mergeWithKey' bin combine g1 g2
where -- We use the lambda form to avoid non-exhaustive pattern matches warning.
combine = \(Tip k1 x1) (Tip _k2 x2) -> case f k1 x1 x2 of Nothing -> Nil
Just x -> x `seq` Tip k1 x
{-# INLINE combine #-}
{-# INLINE mergeWithKey #-}
{--------------------------------------------------------------------
Min\/Max
--------------------------------------------------------------------}
-- | /O(log n)/. Update the value at the minimal key.
--
-- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]
-- > updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMinWithKey f t =
case t of Bin p m l r | m < 0 -> bin p m l (go f r)
_ -> go f t
where
go f' (Bin p m l r) = bin p m (go f' l) r
go f' (Tip k y) = case f' k y of
Just y' -> y' `seq` Tip k y'
Nothing -> Nil
go _ Nil = error "updateMinWithKey Nil"
-- | /O(log n)/. Update the value at the maximal key.
--
-- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]
-- > updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMaxWithKey f t =
case t of Bin p m l r | m < 0 -> bin p m (go f l) r
_ -> go f t
where
go f' (Bin p m l r) = bin p m l (go f' r)
go f' (Tip k y) = case f' k y of
Just y' -> y' `seq` Tip k y'
Nothing -> Nil
go _ Nil = error "updateMaxWithKey Nil"
-- | /O(log n)/. Update the value at the maximal key.
--
-- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]
-- > updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMax f = updateMaxWithKey (const f)
-- | /O(log n)/. Update the value at the minimal key.
--
-- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]
-- > updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMin f = updateMinWithKey (const f)
{--------------------------------------------------------------------
Mapping
--------------------------------------------------------------------}
-- | /O(n)/. Map a function over all values in the map.
--
-- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]
map :: (a -> b) -> IntMap a -> IntMap b
map f t
= case t of
Bin p m l r -> Bin p m (map f l) (map f r)
Tip k x -> Tip k $! f x
Nil -> Nil
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] map #-}
{-# RULES
"map/map" forall f g xs . map f (map g xs) = map (f . g) xs
#-}
#endif
#if __GLASGOW_HASKELL__ >= 709
{-# RULES
"map/coerce" map coerce = coerce
#-}
#endif
-- | /O(n)/. Map a function over all values in the map.
--
-- > let f key x = (show key) ++ ":" ++ x
-- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]
mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey f t
= case t of
Bin p m l r -> Bin p m (mapWithKey f l) (mapWithKey f r)
Tip k x -> Tip k $! f k x
Nil -> Nil
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] mapWithKey #-}
{-# RULES
"mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) =
mapWithKey (\k a -> f k (g k a)) xs
"mapWithKey/map" forall f g xs . mapWithKey f (map g xs) =
mapWithKey (\k a -> f k (g a)) xs
"map/mapWithKey" forall f g xs . map f (mapWithKey g xs) =
mapWithKey (\k a -> f (g k a)) xs
#-}
#endif
-- | /O(n)/. The function @'mapAccum'@ threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a b = (a ++ b, b ++ "X")
-- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])
mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccum f = mapAccumWithKey (\a' _ x -> f a' x)
-- | /O(n)/. The function @'mapAccumWithKey'@ threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")
-- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])
mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumWithKey f a t
= mapAccumL f a t
-- | /O(n)/. The function @'mapAccumL'@ threads an accumulating
-- argument through the map in ascending order of keys. Strict in
-- the accumulating argument and the both elements of the
-- result of the function.
mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumL f0 a0 t0 = toPair $ go f0 a0 t0
where
go f a t
= case t of
Bin p m l r -> let (a1 :*: l') = go f a l
(a2 :*: r') = go f a1 r
in (a2 :*: Bin p m l' r')
Tip k x -> let (a',x') = f a k x in x' `seq` (a' :*: Tip k x')
Nil -> (a :*: Nil)
-- | /O(n)/. The function @'mapAccumR'@ threads an accumulating
-- argument through the map in descending order of keys.
mapAccumRWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumRWithKey f0 a0 t0 = toPair $ go f0 a0 t0
where
go f a t
= case t of
Bin p m l r -> let (a1 :*: r') = go f a r
(a2 :*: l') = go f a1 l
in (a2 :*: Bin p m l' r')
Tip k x -> let (a',x') = f a k x in x' `seq` (a' :*: Tip k x')
Nil -> (a :*: Nil)
-- | /O(n*log n)/.
-- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- The size of the result may be smaller if @f@ maps two or more distinct
-- keys to the same new key. In this case the associated values will be
-- combined using @c@.
--
-- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"
-- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"
mapKeysWith :: (a -> a -> a) -> (Key->Key) -> IntMap a -> IntMap a
mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) []
{--------------------------------------------------------------------
Filter
--------------------------------------------------------------------}
-- | /O(n)/. Map values and collect the 'Just' results.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"
mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe f = mapMaybeWithKey (\_ x -> f x)
-- | /O(n)/. Map keys\/values and collect the 'Just' results.
--
-- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing
-- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"
mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey f (Bin p m l r)
= bin p m (mapMaybeWithKey f l) (mapMaybeWithKey f r)
mapMaybeWithKey f (Tip k x) = case f k x of
Just y -> y `seq` Tip k y
Nothing -> Nil
mapMaybeWithKey _ Nil = Nil
-- | /O(n)/. Map values and separate the 'Left' and 'Right' results.
--
-- > let f a = if a < "c" then Left a else Right a
-- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])
-- >
-- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEither f m
= mapEitherWithKey (\_ x -> f x) m
-- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results.
--
-- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)
-- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])
-- >
-- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])
mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEitherWithKey f0 t0 = toPair $ go f0 t0
where
go f (Bin p m l r)
= bin p m l1 r1 :*: bin p m l2 r2
where
(l1 :*: l2) = go f l
(r1 :*: r2) = go f r
go f (Tip k x) = case f k x of
Left y -> y `seq` (Tip k y :*: Nil)
Right z -> z `seq` (Nil :*: Tip k z)
go _ Nil = (Nil :*: Nil)
{--------------------------------------------------------------------
Conversions
--------------------------------------------------------------------}
-- | /O(n)/. Build a map from a set of keys and a function which for each key
-- computes its value.
--
-- > fromSet (\k -> replicate k 'a') (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]
-- > fromSet undefined Data.IntSet.empty == empty
fromSet :: (Key -> a) -> IntSet.IntSet -> IntMap a
fromSet _ IntSet.Nil = Nil
fromSet f (IntSet.Bin p m l r) = Bin p m (fromSet f l) (fromSet f r)
fromSet f (IntSet.Tip kx bm) = buildTree f kx bm (IntSet.suffixBitMask + 1)
where -- This is slightly complicated, as we to convert the dense
-- representation of IntSet into tree representation of IntMap.
--
-- We are given a nonzero bit mask 'bmask' of 'bits' bits with prefix 'prefix'.
-- We split bmask into halves corresponding to left and right subtree.
-- If they are both nonempty, we create a Bin node, otherwise exactly
-- one of them is nonempty and we construct the IntMap from that half.
buildTree g prefix bmask bits = prefix `seq` bmask `seq` case bits of
0 -> Tip prefix $! g prefix
_ -> case intFromNat ((natFromInt bits) `shiftRL` 1) of
bits2 | bmask .&. ((1 `shiftLL` bits2) - 1) == 0 ->
buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2
| (bmask `shiftRL` bits2) .&. ((1 `shiftLL` bits2) - 1) == 0 ->
buildTree g prefix bmask bits2
| otherwise ->
Bin prefix bits2 (buildTree g prefix bmask bits2) (buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2)
{--------------------------------------------------------------------
Lists
--------------------------------------------------------------------}
-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs.
--
-- > fromList [] == empty
-- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
-- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]
fromList :: [(Key,a)] -> IntMap a
fromList xs
= foldlStrict ins empty xs
where
ins t (k,x) = insert k x t
-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'.
--
-- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]
-- > fromListWith (++) [] == empty
fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWith f xs
= fromListWithKey (\_ x y -> f x y) xs
-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs with a combining function. See also fromAscListWithKey'.
--
-- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]
-- > fromListWith (++) [] == empty
fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWithKey f xs
= foldlStrict ins empty xs
where
ins t (k,x) = insertWithKey f k x t
-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order.
--
-- > fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]
-- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]
fromAscList :: [(Key,a)] -> IntMap a
fromAscList xs
= fromAscListWithKey (\_ x _ -> x) xs
-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]
fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWith f xs
= fromAscListWithKey (\_ x y -> f x y) xs
-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]
fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWithKey _ [] = Nil
fromAscListWithKey f (x0 : xs0) = fromDistinctAscList (combineEq x0 xs0)
where
-- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs]
combineEq z [] = [z]
combineEq z@(kz,zz) (x@(kx,xx):xs)
| kx==kz = let yy = f kx xx zz in yy `seq` combineEq (kx,yy) xs
| otherwise = z:combineEq x xs
-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order and all distinct.
-- /The precondition (input list is strictly ascending) is not checked./
--
-- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]
fromDistinctAscList :: [(Key,a)] -> IntMap a
fromDistinctAscList [] = Nil
fromDistinctAscList (z0 : zs0) = work z0 zs0 Nada
where
work (kx,vx) [] stk = vx `seq` finish kx (Tip kx vx) stk
work (kx,vx) (z@(kz,_):zs) stk = vx `seq` reduce z zs (branchMask kx kz) kx (Tip kx vx) stk
reduce :: (Key,a) -> [(Key,a)] -> Mask -> Prefix -> IntMap a -> Stack a -> IntMap a
reduce z zs _ px tx Nada = work z zs (Push px tx Nada)
reduce z zs m px tx stk@(Push py ty stk') =
let mxy = branchMask px py
pxy = mask px mxy
in if shorter m mxy
then reduce z zs m pxy (Bin pxy mxy ty tx) stk'
else work z zs (Push px tx stk)
finish _ t Nada = t
finish px tx (Push py ty stk) = finish p (link py ty px tx) stk
where m = branchMask px py
p = mask px m
data Stack a = Push {-# UNPACK #-} !Prefix !(IntMap a) !(Stack a) | Nada
|