1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
|
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__
{-# LANGUAGE MagicHash, BangPatterns, DeriveDataTypeable, StandaloneDeriving #-}
#endif
#if !defined(TESTING) && __GLASGOW_HASKELL__ >= 703
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE TypeFamilies #-}
#endif
#include "containers.h"
-----------------------------------------------------------------------------
-- |
-- Module : Data.IntSet.Base
-- Copyright : (c) Daan Leijen 2002
-- (c) Joachim Breitner 2011
-- License : BSD-style
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- An efficient implementation of integer sets.
--
-- These modules are intended to be imported qualified, to avoid name
-- clashes with Prelude functions, e.g.
--
-- > import Data.IntSet (IntSet)
-- > import qualified Data.IntSet as IntSet
--
-- The implementation is based on /big-endian patricia trees/. This data
-- structure performs especially well on binary operations like 'union'
-- and 'intersection'. However, my benchmarks show that it is also
-- (much) faster on insertions and deletions when compared to a generic
-- size-balanced set implementation (see "Data.Set").
--
-- * Chris Okasaki and Andy Gill, \"/Fast Mergeable Integer Maps/\",
-- Workshop on ML, September 1998, pages 77-86,
-- <http://citeseer.ist.psu.edu/okasaki98fast.html>
--
-- * D.R. Morrison, \"/PATRICIA -- Practical Algorithm To Retrieve
-- Information Coded In Alphanumeric/\", Journal of the ACM, 15(4),
-- October 1968, pages 514-534.
--
-- Additionally, this implementation places bitmaps in the leaves of the tree.
-- Their size is the natural size of a machine word (32 or 64 bits) and greatly
-- reduce memory footprint and execution times for dense sets, e.g. sets where
-- it is likely that many values lie close to each other. The asymptotics are
-- not affected by this optimization.
--
-- Many operations have a worst-case complexity of /O(min(n,W))/.
-- This means that the operation can become linear in the number of
-- elements with a maximum of /W/ -- the number of bits in an 'Int'
-- (32 or 64).
-----------------------------------------------------------------------------
-- [Note: INLINE bit fiddling]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- It is essential that the bit fiddling functions like mask, zero, branchMask
-- etc are inlined. If they do not, the memory allocation skyrockets. The GHC
-- usually gets it right, but it is disastrous if it does not. Therefore we
-- explicitly mark these functions INLINE.
-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Care must be taken when using 'go' function which captures an argument.
-- Sometimes (for example when the argument is passed to a data constructor,
-- as in insert), GHC heap-allocates more than necessary. Therefore C-- code
-- must be checked for increased allocation when creating and modifying such
-- functions.
-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of IntSet matters when considering performance.
-- Currently in GHC 7.0, when type has 3 constructors, they are matched from
-- the first to the last -- the best performance is achieved when the
-- constructors are ordered by frequency.
-- On GHC 7.0, reordering constructors from Nil | Tip | Bin to Bin | Tip | Nil
-- improves the benchmark by circa 10%.
module Data.IntSet.Base (
-- * Set type
IntSet(..), Key -- instance Eq,Show
-- * Operators
, (\\)
-- * Query
, null
, size
, member
, notMember
, lookupLT
, lookupGT
, lookupLE
, lookupGE
, isSubsetOf
, isProperSubsetOf
-- * Construction
, empty
, singleton
, insert
, delete
-- * Combine
, union
, unions
, difference
, intersection
-- * Filter
, filter
, partition
, split
, splitMember
, splitRoot
-- * Map
, map
-- * Folds
, foldr
, foldl
-- ** Strict folds
, foldr'
, foldl'
-- ** Legacy folds
, fold
-- * Min\/Max
, findMin
, findMax
, deleteMin
, deleteMax
, deleteFindMin
, deleteFindMax
, maxView
, minView
-- * Conversion
-- ** List
, elems
, toList
, fromList
-- ** Ordered list
, toAscList
, toDescList
, fromAscList
, fromDistinctAscList
-- * Debugging
, showTree
, showTreeWith
-- * Internals
, match
, suffixBitMask
, prefixBitMask
, bitmapOf
) where
import Control.DeepSeq (NFData(rnf))
import Data.Bits
import qualified Data.List as List
import Data.Maybe (fromMaybe)
#if !MIN_VERSION_base(4,8,0)
import Data.Monoid (Monoid(..))
import Data.Word (Word)
#endif
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup((<>), stimes), stimesIdempotentMonoid)
#endif
import Data.Typeable
import Prelude hiding (filter, foldr, foldl, null, map)
import Data.Utils.BitUtil
import Data.Utils.StrictFold
import Data.Utils.StrictPair
#if __GLASGOW_HASKELL__
import Data.Data (Data(..), Constr, mkConstr, constrIndex, Fixity(Prefix), DataType, mkDataType)
import Text.Read
#endif
#if __GLASGOW_HASKELL__
import GHC.Exts (Int(..), build)
#if __GLASGOW_HASKELL__ >= 708
import qualified GHC.Exts as GHCExts
#endif
import GHC.Prim (indexInt8OffAddr#)
#endif
infixl 9 \\{-This comment teaches CPP correct behaviour -}
-- A "Nat" is a natural machine word (an unsigned Int)
type Nat = Word
natFromInt :: Int -> Nat
natFromInt i = fromIntegral i
{-# INLINE natFromInt #-}
intFromNat :: Nat -> Int
intFromNat w = fromIntegral w
{-# INLINE intFromNat #-}
{--------------------------------------------------------------------
Operators
--------------------------------------------------------------------}
-- | /O(n+m)/. See 'difference'.
(\\) :: IntSet -> IntSet -> IntSet
m1 \\ m2 = difference m1 m2
{--------------------------------------------------------------------
Types
--------------------------------------------------------------------}
-- | A set of integers.
-- See Note: Order of constructors
data IntSet = Bin {-# UNPACK #-} !Prefix {-# UNPACK #-} !Mask !IntSet !IntSet
-- Invariant: Nil is never found as a child of Bin.
-- Invariant: The Mask is a power of 2. It is the largest bit position at which
-- two elements of the set differ.
-- Invariant: Prefix is the common high-order bits that all elements share to
-- the left of the Mask bit.
-- Invariant: In Bin prefix mask left right, left consists of the elements that
-- don't have the mask bit set; right is all the elements that do.
| Tip {-# UNPACK #-} !Prefix {-# UNPACK #-} !BitMap
-- Invariant: The Prefix is zero for all but the last 5 (on 32 bit arches) or 6
-- bits (on 64 bit arches). The values of the map represented by a tip
-- are the prefix plus the indices of the set bits in the bit map.
| Nil
-- A number stored in a set is stored as
-- * Prefix (all but last 5-6 bits) and
-- * BitMap (last 5-6 bits stored as a bitmask)
-- Last 5-6 bits are called a Suffix.
type Prefix = Int
type Mask = Int
type BitMap = Word
type Key = Int
instance Monoid IntSet where
mempty = empty
mconcat = unions
#if !(MIN_VERSION_base(4,9,0))
mappend = union
#else
mappend = (<>)
instance Semigroup IntSet where
(<>) = union
stimes = stimesIdempotentMonoid
#endif
#if __GLASGOW_HASKELL__
{--------------------------------------------------------------------
A Data instance
--------------------------------------------------------------------}
-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.
instance Data IntSet where
gfoldl f z is = z fromList `f` (toList is)
toConstr _ = fromListConstr
gunfold k z c = case constrIndex c of
1 -> k (z fromList)
_ -> error "gunfold"
dataTypeOf _ = intSetDataType
fromListConstr :: Constr
fromListConstr = mkConstr intSetDataType "fromList" [] Prefix
intSetDataType :: DataType
intSetDataType = mkDataType "Data.IntSet.Base.IntSet" [fromListConstr]
#endif
{--------------------------------------------------------------------
Query
--------------------------------------------------------------------}
-- | /O(1)/. Is the set empty?
null :: IntSet -> Bool
null Nil = True
null _ = False
{-# INLINE null #-}
-- | /O(n)/. Cardinality of the set.
size :: IntSet -> Int
size t
= case t of
Bin _ _ l r -> size l + size r
Tip _ bm -> bitcount 0 bm
Nil -> 0
-- | /O(min(n,W))/. Is the value a member of the set?
-- See Note: Local 'go' functions and capturing]
member :: Key -> IntSet -> Bool
member x = x `seq` go
where
go (Bin p m l r)
| nomatch x p m = False
| zero x m = go l
| otherwise = go r
go (Tip y bm) = prefixOf x == y && bitmapOf x .&. bm /= 0
go Nil = False
-- | /O(min(n,W))/. Is the element not in the set?
notMember :: Key -> IntSet -> Bool
notMember k = not . member k
-- | /O(log n)/. Find largest element smaller than the given one.
--
-- > lookupLT 3 (fromList [3, 5]) == Nothing
-- > lookupLT 5 (fromList [3, 5]) == Just 3
-- See Note: Local 'go' functions and capturing.
lookupLT :: Key -> IntSet -> Maybe Key
lookupLT x t = x `seq` case t of
Bin _ m l r | m < 0 -> if x >= 0 then go r l else go Nil r
_ -> go Nil t
where
go def (Bin p m l r) | nomatch x p m = if x < p then unsafeFindMax def else unsafeFindMax r
| zero x m = go def l
| otherwise = go l r
go def (Tip kx bm) | prefixOf x > kx = Just $ kx + highestBitSet bm
| prefixOf x == kx && maskLT /= 0 = Just $ kx + highestBitSet maskLT
| otherwise = unsafeFindMax def
where maskLT = (bitmapOf x - 1) .&. bm
go def Nil = unsafeFindMax def
-- | /O(log n)/. Find smallest element greater than the given one.
--
-- > lookupGT 4 (fromList [3, 5]) == Just 5
-- > lookupGT 5 (fromList [3, 5]) == Nothing
-- See Note: Local 'go' functions and capturing.
lookupGT :: Key -> IntSet -> Maybe Key
lookupGT x t = x `seq` case t of
Bin _ m l r | m < 0 -> if x >= 0 then go Nil l else go l r
_ -> go Nil t
where
go def (Bin p m l r) | nomatch x p m = if x < p then unsafeFindMin l else unsafeFindMin def
| zero x m = go r l
| otherwise = go def r
go def (Tip kx bm) | prefixOf x < kx = Just $ kx + lowestBitSet bm
| prefixOf x == kx && maskGT /= 0 = Just $ kx + lowestBitSet maskGT
| otherwise = unsafeFindMin def
where maskGT = (- ((bitmapOf x) `shiftLL` 1)) .&. bm
go def Nil = unsafeFindMin def
-- | /O(log n)/. Find largest element smaller or equal to the given one.
--
-- > lookupLE 2 (fromList [3, 5]) == Nothing
-- > lookupLE 4 (fromList [3, 5]) == Just 3
-- > lookupLE 5 (fromList [3, 5]) == Just 5
-- See Note: Local 'go' functions and capturing.
lookupLE :: Key -> IntSet -> Maybe Key
lookupLE x t = x `seq` case t of
Bin _ m l r | m < 0 -> if x >= 0 then go r l else go Nil r
_ -> go Nil t
where
go def (Bin p m l r) | nomatch x p m = if x < p then unsafeFindMax def else unsafeFindMax r
| zero x m = go def l
| otherwise = go l r
go def (Tip kx bm) | prefixOf x > kx = Just $ kx + highestBitSet bm
| prefixOf x == kx && maskLE /= 0 = Just $ kx + highestBitSet maskLE
| otherwise = unsafeFindMax def
where maskLE = (((bitmapOf x) `shiftLL` 1) - 1) .&. bm
go def Nil = unsafeFindMax def
-- | /O(log n)/. Find smallest element greater or equal to the given one.
--
-- > lookupGE 3 (fromList [3, 5]) == Just 3
-- > lookupGE 4 (fromList [3, 5]) == Just 5
-- > lookupGE 6 (fromList [3, 5]) == Nothing
-- See Note: Local 'go' functions and capturing.
lookupGE :: Key -> IntSet -> Maybe Key
lookupGE x t = x `seq` case t of
Bin _ m l r | m < 0 -> if x >= 0 then go Nil l else go l r
_ -> go Nil t
where
go def (Bin p m l r) | nomatch x p m = if x < p then unsafeFindMin l else unsafeFindMin def
| zero x m = go r l
| otherwise = go def r
go def (Tip kx bm) | prefixOf x < kx = Just $ kx + lowestBitSet bm
| prefixOf x == kx && maskGE /= 0 = Just $ kx + lowestBitSet maskGE
| otherwise = unsafeFindMin def
where maskGE = (- (bitmapOf x)) .&. bm
go def Nil = unsafeFindMin def
-- Helper function for lookupGE and lookupGT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMin :: IntSet -> Maybe Key
unsafeFindMin Nil = Nothing
unsafeFindMin (Tip kx bm) = Just $ kx + lowestBitSet bm
unsafeFindMin (Bin _ _ l _) = unsafeFindMin l
-- Helper function for lookupLE and lookupLT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMax :: IntSet -> Maybe Key
unsafeFindMax Nil = Nothing
unsafeFindMax (Tip kx bm) = Just $ kx + highestBitSet bm
unsafeFindMax (Bin _ _ _ r) = unsafeFindMax r
{--------------------------------------------------------------------
Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty set.
empty :: IntSet
empty
= Nil
{-# INLINE empty #-}
-- | /O(1)/. A set of one element.
singleton :: Key -> IntSet
singleton x
= Tip (prefixOf x) (bitmapOf x)
{-# INLINE singleton #-}
{--------------------------------------------------------------------
Insert
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Add a value to the set. There is no left- or right bias for
-- IntSets.
insert :: Key -> IntSet -> IntSet
insert x = x `seq` insertBM (prefixOf x) (bitmapOf x)
-- Helper function for insert and union.
insertBM :: Prefix -> BitMap -> IntSet -> IntSet
insertBM kx bm t = kx `seq` bm `seq`
case t of
Bin p m l r
| nomatch kx p m -> link kx (Tip kx bm) p t
| zero kx m -> Bin p m (insertBM kx bm l) r
| otherwise -> Bin p m l (insertBM kx bm r)
Tip kx' bm'
| kx' == kx -> Tip kx' (bm .|. bm')
| otherwise -> link kx (Tip kx bm) kx' t
Nil -> Tip kx bm
-- | /O(min(n,W))/. Delete a value in the set. Returns the
-- original set when the value was not present.
delete :: Key -> IntSet -> IntSet
delete x = x `seq` deleteBM (prefixOf x) (bitmapOf x)
-- Deletes all values mentioned in the BitMap from the set.
-- Helper function for delete and difference.
deleteBM :: Prefix -> BitMap -> IntSet -> IntSet
deleteBM kx bm t = kx `seq` bm `seq`
case t of
Bin p m l r
| nomatch kx p m -> t
| zero kx m -> bin p m (deleteBM kx bm l) r
| otherwise -> bin p m l (deleteBM kx bm r)
Tip kx' bm'
| kx' == kx -> tip kx (bm' .&. complement bm)
| otherwise -> t
Nil -> Nil
{--------------------------------------------------------------------
Union
--------------------------------------------------------------------}
-- | The union of a list of sets.
unions :: [IntSet] -> IntSet
unions xs
= foldlStrict union empty xs
-- | /O(n+m)/. The union of two sets.
union :: IntSet -> IntSet -> IntSet
union t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = union1
| shorter m2 m1 = union2
| p1 == p2 = Bin p1 m1 (union l1 l2) (union r1 r2)
| otherwise = link p1 t1 p2 t2
where
union1 | nomatch p2 p1 m1 = link p1 t1 p2 t2
| zero p2 m1 = Bin p1 m1 (union l1 t2) r1
| otherwise = Bin p1 m1 l1 (union r1 t2)
union2 | nomatch p1 p2 m2 = link p1 t1 p2 t2
| zero p1 m2 = Bin p2 m2 (union t1 l2) r2
| otherwise = Bin p2 m2 l2 (union t1 r2)
union t@(Bin _ _ _ _) (Tip kx bm) = insertBM kx bm t
union t@(Bin _ _ _ _) Nil = t
union (Tip kx bm) t = insertBM kx bm t
union Nil t = t
{--------------------------------------------------------------------
Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference between two sets.
difference :: IntSet -> IntSet -> IntSet
difference t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = difference1
| shorter m2 m1 = difference2
| p1 == p2 = bin p1 m1 (difference l1 l2) (difference r1 r2)
| otherwise = t1
where
difference1 | nomatch p2 p1 m1 = t1
| zero p2 m1 = bin p1 m1 (difference l1 t2) r1
| otherwise = bin p1 m1 l1 (difference r1 t2)
difference2 | nomatch p1 p2 m2 = t1
| zero p1 m2 = difference t1 l2
| otherwise = difference t1 r2
difference t@(Bin _ _ _ _) (Tip kx bm) = deleteBM kx bm t
difference t@(Bin _ _ _ _) Nil = t
difference t1@(Tip kx bm) t2 = differenceTip t2
where differenceTip (Bin p2 m2 l2 r2) | nomatch kx p2 m2 = t1
| zero kx m2 = differenceTip l2
| otherwise = differenceTip r2
differenceTip (Tip kx2 bm2) | kx == kx2 = tip kx (bm .&. complement bm2)
| otherwise = t1
differenceTip Nil = t1
difference Nil _ = Nil
{--------------------------------------------------------------------
Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The intersection of two sets.
intersection :: IntSet -> IntSet -> IntSet
intersection t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
| shorter m1 m2 = intersection1
| shorter m2 m1 = intersection2
| p1 == p2 = bin p1 m1 (intersection l1 l2) (intersection r1 r2)
| otherwise = Nil
where
intersection1 | nomatch p2 p1 m1 = Nil
| zero p2 m1 = intersection l1 t2
| otherwise = intersection r1 t2
intersection2 | nomatch p1 p2 m2 = Nil
| zero p1 m2 = intersection t1 l2
| otherwise = intersection t1 r2
intersection t1@(Bin _ _ _ _) (Tip kx2 bm2) = intersectBM t1
where intersectBM (Bin p1 m1 l1 r1) | nomatch kx2 p1 m1 = Nil
| zero kx2 m1 = intersectBM l1
| otherwise = intersectBM r1
intersectBM (Tip kx1 bm1) | kx1 == kx2 = tip kx1 (bm1 .&. bm2)
| otherwise = Nil
intersectBM Nil = Nil
intersection (Bin _ _ _ _) Nil = Nil
intersection (Tip kx1 bm1) t2 = intersectBM t2
where intersectBM (Bin p2 m2 l2 r2) | nomatch kx1 p2 m2 = Nil
| zero kx1 m2 = intersectBM l2
| otherwise = intersectBM r2
intersectBM (Tip kx2 bm2) | kx1 == kx2 = tip kx1 (bm1 .&. bm2)
| otherwise = Nil
intersectBM Nil = Nil
intersection Nil _ = Nil
{--------------------------------------------------------------------
Subset
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal).
isProperSubsetOf :: IntSet -> IntSet -> Bool
isProperSubsetOf t1 t2
= case subsetCmp t1 t2 of
LT -> True
_ -> False
subsetCmp :: IntSet -> IntSet -> Ordering
subsetCmp t1@(Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
| shorter m1 m2 = GT
| shorter m2 m1 = case subsetCmpLt of
GT -> GT
_ -> LT
| p1 == p2 = subsetCmpEq
| otherwise = GT -- disjoint
where
subsetCmpLt | nomatch p1 p2 m2 = GT
| zero p1 m2 = subsetCmp t1 l2
| otherwise = subsetCmp t1 r2
subsetCmpEq = case (subsetCmp l1 l2, subsetCmp r1 r2) of
(GT,_ ) -> GT
(_ ,GT) -> GT
(EQ,EQ) -> EQ
_ -> LT
subsetCmp (Bin _ _ _ _) _ = GT
subsetCmp (Tip kx1 bm1) (Tip kx2 bm2)
| kx1 /= kx2 = GT -- disjoint
| bm1 == bm2 = EQ
| bm1 .&. complement bm2 == 0 = LT
| otherwise = GT
subsetCmp t1@(Tip kx _) (Bin p m l r)
| nomatch kx p m = GT
| zero kx m = case subsetCmp t1 l of GT -> GT ; _ -> LT
| otherwise = case subsetCmp t1 r of GT -> GT ; _ -> LT
subsetCmp (Tip _ _) Nil = GT -- disjoint
subsetCmp Nil Nil = EQ
subsetCmp Nil _ = LT
-- | /O(n+m)/. Is this a subset?
-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@.
isSubsetOf :: IntSet -> IntSet -> Bool
isSubsetOf t1@(Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
| shorter m1 m2 = False
| shorter m2 m1 = match p1 p2 m2 && (if zero p1 m2 then isSubsetOf t1 l2
else isSubsetOf t1 r2)
| otherwise = (p1==p2) && isSubsetOf l1 l2 && isSubsetOf r1 r2
isSubsetOf (Bin _ _ _ _) _ = False
isSubsetOf (Tip kx1 bm1) (Tip kx2 bm2) = kx1 == kx2 && bm1 .&. complement bm2 == 0
isSubsetOf t1@(Tip kx _) (Bin p m l r)
| nomatch kx p m = False
| zero kx m = isSubsetOf t1 l
| otherwise = isSubsetOf t1 r
isSubsetOf (Tip _ _) Nil = False
isSubsetOf Nil _ = True
{--------------------------------------------------------------------
Filter
--------------------------------------------------------------------}
-- | /O(n)/. Filter all elements that satisfy some predicate.
filter :: (Key -> Bool) -> IntSet -> IntSet
filter predicate t
= case t of
Bin p m l r
-> bin p m (filter predicate l) (filter predicate r)
Tip kx bm
-> tip kx (foldl'Bits 0 (bitPred kx) 0 bm)
Nil -> Nil
where bitPred kx bm bi | predicate (kx + bi) = bm .|. bitmapOfSuffix bi
| otherwise = bm
{-# INLINE bitPred #-}
-- | /O(n)/. partition the set according to some predicate.
partition :: (Key -> Bool) -> IntSet -> (IntSet,IntSet)
partition predicate0 t0 = toPair $ go predicate0 t0
where
go predicate t
= case t of
Bin p m l r
-> let (l1 :*: l2) = go predicate l
(r1 :*: r2) = go predicate r
in bin p m l1 r1 :*: bin p m l2 r2
Tip kx bm
-> let bm1 = foldl'Bits 0 (bitPred kx) 0 bm
in tip kx bm1 :*: tip kx (bm `xor` bm1)
Nil -> (Nil :*: Nil)
where bitPred kx bm bi | predicate (kx + bi) = bm .|. bitmapOfSuffix bi
| otherwise = bm
{-# INLINE bitPred #-}
-- | /O(min(n,W))/. The expression (@'split' x set@) is a pair @(set1,set2)@
-- where @set1@ comprises the elements of @set@ less than @x@ and @set2@
-- comprises the elements of @set@ greater than @x@.
--
-- > split 3 (fromList [1..5]) == (fromList [1,2], fromList [4,5])
split :: Key -> IntSet -> (IntSet,IntSet)
split x t =
case t of
Bin _ m l r
| m < 0 -> if x >= 0 -- handle negative numbers.
then case go x l of (lt :*: gt) -> let lt' = union lt r
in lt' `seq` (lt', gt)
else case go x r of (lt :*: gt) -> let gt' = union gt l
in gt' `seq` (lt, gt')
_ -> case go x t of
(lt :*: gt) -> (lt, gt)
where
go !x' t'@(Bin p m l r)
| match x' p m = if zero x' m
then case go x' l of
(lt :*: gt) -> lt :*: union gt r
else case go x' r of
(lt :*: gt) -> union lt l :*: gt
| otherwise = if x' < p then (Nil :*: t')
else (t' :*: Nil)
go x' t'@(Tip kx' bm)
| kx' > x' = (Nil :*: t')
-- equivalent to kx' > prefixOf x'
| kx' < prefixOf x' = (t' :*: Nil)
| otherwise = tip kx' (bm .&. lowerBitmap) :*: tip kx' (bm .&. higherBitmap)
where lowerBitmap = bitmapOf x' - 1
higherBitmap = complement (lowerBitmap + bitmapOf x')
go _ Nil = (Nil :*: Nil)
-- | /O(min(n,W))/. Performs a 'split' but also returns whether the pivot
-- element was found in the original set.
splitMember :: Key -> IntSet -> (IntSet,Bool,IntSet)
splitMember x t =
case t of
Bin _ m l r | m < 0 -> if x >= 0
then case go x l of
(lt, fnd, gt) -> let lt' = union lt r
in lt' `seq` (lt', fnd, gt)
else case go x r of
(lt, fnd, gt) -> let gt' = union gt l
in gt' `seq` (lt, fnd, gt')
_ -> go x t
where
go x' t'@(Bin p m l r)
| match x' p m = if zero x' m
then case go x' l of
(lt, fnd, gt) -> (lt, fnd, union gt r)
else case go x' r of
(lt, fnd, gt) -> (union lt l, fnd, gt)
| otherwise = if x' < p then (Nil, False, t') else (t', False, Nil)
go x' t'@(Tip kx' bm)
| kx' > x' = (Nil, False, t')
-- equivalent to kx' > prefixOf x'
| kx' < prefixOf x' = (t', False, Nil)
| otherwise = let lt = tip kx' (bm .&. lowerBitmap)
found = (bm .&. bitmapOfx') /= 0
gt = tip kx' (bm .&. higherBitmap)
in lt `seq` found `seq` gt `seq` (lt, found, gt)
where bitmapOfx' = bitmapOf x'
lowerBitmap = bitmapOfx' - 1
higherBitmap = complement (lowerBitmap + bitmapOfx')
go _ Nil = (Nil, False, Nil)
{----------------------------------------------------------------------
Min/Max
----------------------------------------------------------------------}
-- | /O(min(n,W))/. Retrieves the maximal key of the set, and the set
-- stripped of that element, or 'Nothing' if passed an empty set.
maxView :: IntSet -> Maybe (Key, IntSet)
maxView t =
case t of Nil -> Nothing
Bin p m l r | m < 0 -> case go l of (result, l') -> Just (result, bin p m l' r)
_ -> Just (go t)
where
go (Bin p m l r) = case go r of (result, r') -> (result, bin p m l r')
go (Tip kx bm) = case highestBitSet bm of bi -> (kx + bi, tip kx (bm .&. complement (bitmapOfSuffix bi)))
go Nil = error "maxView Nil"
-- | /O(min(n,W))/. Retrieves the minimal key of the set, and the set
-- stripped of that element, or 'Nothing' if passed an empty set.
minView :: IntSet -> Maybe (Key, IntSet)
minView t =
case t of Nil -> Nothing
Bin p m l r | m < 0 -> case go r of (result, r') -> Just (result, bin p m l r')
_ -> Just (go t)
where
go (Bin p m l r) = case go l of (result, l') -> (result, bin p m l' r)
go (Tip kx bm) = case lowestBitSet bm of bi -> (kx + bi, tip kx (bm .&. complement (bitmapOfSuffix bi)))
go Nil = error "minView Nil"
-- | /O(min(n,W))/. Delete and find the minimal element.
--
-- > deleteFindMin set = (findMin set, deleteMin set)
deleteFindMin :: IntSet -> (Key, IntSet)
deleteFindMin = fromMaybe (error "deleteFindMin: empty set has no minimal element") . minView
-- | /O(min(n,W))/. Delete and find the maximal element.
--
-- > deleteFindMax set = (findMax set, deleteMax set)
deleteFindMax :: IntSet -> (Key, IntSet)
deleteFindMax = fromMaybe (error "deleteFindMax: empty set has no maximal element") . maxView
-- | /O(min(n,W))/. The minimal element of the set.
findMin :: IntSet -> Key
findMin Nil = error "findMin: empty set has no minimal element"
findMin (Tip kx bm) = kx + lowestBitSet bm
findMin (Bin _ m l r)
| m < 0 = find r
| otherwise = find l
where find (Tip kx bm) = kx + lowestBitSet bm
find (Bin _ _ l' _) = find l'
find Nil = error "findMin Nil"
-- | /O(min(n,W))/. The maximal element of a set.
findMax :: IntSet -> Key
findMax Nil = error "findMax: empty set has no maximal element"
findMax (Tip kx bm) = kx + highestBitSet bm
findMax (Bin _ m l r)
| m < 0 = find l
| otherwise = find r
where find (Tip kx bm) = kx + highestBitSet bm
find (Bin _ _ _ r') = find r'
find Nil = error "findMax Nil"
-- | /O(min(n,W))/. Delete the minimal element. Returns an empty set if the set is empty.
--
-- Note that this is a change of behaviour for consistency with 'Data.Set.Set' –
-- versions prior to 0.5 threw an error if the 'IntSet' was already empty.
deleteMin :: IntSet -> IntSet
deleteMin = maybe Nil snd . minView
-- | /O(min(n,W))/. Delete the maximal element. Returns an empty set if the set is empty.
--
-- Note that this is a change of behaviour for consistency with 'Data.Set.Set' –
-- versions prior to 0.5 threw an error if the 'IntSet' was already empty.
deleteMax :: IntSet -> IntSet
deleteMax = maybe Nil snd . maxView
{----------------------------------------------------------------------
Map
----------------------------------------------------------------------}
-- | /O(n*min(n,W))/.
-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@.
--
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@
map :: (Key -> Key) -> IntSet -> IntSet
map f = fromList . List.map f . toList
{--------------------------------------------------------------------
Fold
--------------------------------------------------------------------}
-- | /O(n)/. Fold the elements in the set using the given right-associative
-- binary operator. This function is an equivalent of 'foldr' and is present
-- for compatibility only.
--
-- /Please note that fold will be deprecated in the future and removed./
fold :: (Key -> b -> b) -> b -> IntSet -> b
fold = foldr
{-# INLINE fold #-}
-- | /O(n)/. Fold the elements in the set using the given right-associative
-- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'toAscList'@.
--
-- For example,
--
-- > toAscList set = foldr (:) [] set
foldr :: (Key -> b -> b) -> b -> IntSet -> b
foldr f z = \t -> -- Use lambda t to be inlinable with two arguments only.
case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before
| otherwise -> go (go z r) l
_ -> go z t
where
go z' Nil = z'
go z' (Tip kx bm) = foldrBits kx f z' bm
go z' (Bin _ _ l r) = go (go z' r) l
{-# INLINE foldr #-}
-- | /O(n)/. A strict version of 'foldr'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldr' :: (Key -> b -> b) -> b -> IntSet -> b
foldr' f z = \t -> -- Use lambda t to be inlinable with two arguments only.
case t of Bin _ m l r | m < 0 -> go (go z l) r -- put negative numbers before
| otherwise -> go (go z r) l
_ -> go z t
where
STRICT_1_OF_2(go)
go z' Nil = z'
go z' (Tip kx bm) = foldr'Bits kx f z' bm
go z' (Bin _ _ l r) = go (go z' r) l
{-# INLINE foldr' #-}
-- | /O(n)/. Fold the elements in the set using the given left-associative
-- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'toAscList'@.
--
-- For example,
--
-- > toDescList set = foldl (flip (:)) [] set
foldl :: (a -> Key -> a) -> a -> IntSet -> a
foldl f z = \t -> -- Use lambda t to be inlinable with two arguments only.
case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before
| otherwise -> go (go z l) r
_ -> go z t
where
go z' Nil = z'
go z' (Tip kx bm) = foldlBits kx f z' bm
go z' (Bin _ _ l r) = go (go z' l) r
{-# INLINE foldl #-}
-- | /O(n)/. A strict version of 'foldl'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldl' :: (a -> Key -> a) -> a -> IntSet -> a
foldl' f z = \t -> -- Use lambda t to be inlinable with two arguments only.
case t of Bin _ m l r | m < 0 -> go (go z r) l -- put negative numbers before
| otherwise -> go (go z l) r
_ -> go z t
where
STRICT_1_OF_2(go)
go z' Nil = z'
go z' (Tip kx bm) = foldl'Bits kx f z' bm
go z' (Bin _ _ l r) = go (go z' l) r
{-# INLINE foldl' #-}
{--------------------------------------------------------------------
List variations
--------------------------------------------------------------------}
-- | /O(n)/. An alias of 'toAscList'. The elements of a set in ascending order.
-- Subject to list fusion.
elems :: IntSet -> [Key]
elems
= toAscList
{--------------------------------------------------------------------
Lists
--------------------------------------------------------------------}
#if __GLASGOW_HASKELL__ >= 708
instance GHCExts.IsList IntSet where
type Item IntSet = Key
fromList = fromList
toList = toList
#endif
-- | /O(n)/. Convert the set to a list of elements. Subject to list fusion.
toList :: IntSet -> [Key]
toList
= toAscList
-- | /O(n)/. Convert the set to an ascending list of elements. Subject to list
-- fusion.
toAscList :: IntSet -> [Key]
toAscList = foldr (:) []
-- | /O(n)/. Convert the set to a descending list of elements. Subject to list
-- fusion.
toDescList :: IntSet -> [Key]
toDescList = foldl (flip (:)) []
-- List fusion for the list generating functions.
#if __GLASGOW_HASKELL__
-- The foldrFB and foldlFB are foldr and foldl equivalents, used for list fusion.
-- They are important to convert unfused to{Asc,Desc}List back, see mapFB in prelude.
foldrFB :: (Key -> b -> b) -> b -> IntSet -> b
foldrFB = foldr
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> Key -> a) -> a -> IntSet -> a
foldlFB = foldl
{-# INLINE[0] foldlFB #-}
-- Inline elems and toList, so that we need to fuse only toAscList.
{-# INLINE elems #-}
{-# INLINE toList #-}
-- The fusion is enabled up to phase 2 included. If it does not succeed,
-- convert in phase 1 the expanded to{Asc,Desc}List calls back to
-- to{Asc,Desc}List. In phase 0, we inline fold{lr}FB (which were used in
-- a list fusion, otherwise it would go away in phase 1), and let compiler do
-- whatever it wants with to{Asc,Desc}List -- it was forbidden to inline it
-- before phase 0, otherwise the fusion rules would not fire at all.
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "IntSet.toAscList" [~1] forall s . toAscList s = build (\c n -> foldrFB c n s) #-}
{-# RULES "IntSet.toAscListBack" [1] foldrFB (:) [] = toAscList #-}
{-# RULES "IntSet.toDescList" [~1] forall s . toDescList s = build (\c n -> foldlFB (\xs x -> c x xs) n s) #-}
{-# RULES "IntSet.toDescListBack" [1] foldlFB (\xs x -> x : xs) [] = toDescList #-}
#endif
-- | /O(n*min(n,W))/. Create a set from a list of integers.
fromList :: [Key] -> IntSet
fromList xs
= foldlStrict ins empty xs
where
ins t x = insert x t
-- | /O(n)/. Build a set from an ascending list of elements.
-- /The precondition (input list is ascending) is not checked./
fromAscList :: [Key] -> IntSet
fromAscList [] = Nil
fromAscList (x0 : xs0) = fromDistinctAscList (combineEq x0 xs0)
where
combineEq x' [] = [x']
combineEq x' (x:xs)
| x==x' = combineEq x' xs
| otherwise = x' : combineEq x xs
-- | /O(n)/. Build a set from an ascending list of distinct elements.
-- /The precondition (input list is strictly ascending) is not checked./
fromDistinctAscList :: [Key] -> IntSet
fromDistinctAscList [] = Nil
fromDistinctAscList (z0 : zs0) = work (prefixOf z0) (bitmapOf z0) zs0 Nada
where
-- 'work' accumulates all values that go into one tip, before passing this Tip
-- to 'reduce'
work kx bm [] stk = finish kx (Tip kx bm) stk
work kx bm (z:zs) stk | kx == prefixOf z = work kx (bm .|. bitmapOf z) zs stk
work kx bm (z:zs) stk = reduce z zs (branchMask z kx) kx (Tip kx bm) stk
reduce z zs _ px tx Nada = work (prefixOf z) (bitmapOf z) zs (Push px tx Nada)
reduce z zs m px tx stk@(Push py ty stk') =
let mxy = branchMask px py
pxy = mask px mxy
in if shorter m mxy
then reduce z zs m pxy (Bin pxy mxy ty tx) stk'
else work (prefixOf z) (bitmapOf z) zs (Push px tx stk)
finish _ t Nada = t
finish px tx (Push py ty stk) = finish p (link py ty px tx) stk
where m = branchMask px py
p = mask px m
data Stack = Push {-# UNPACK #-} !Prefix !IntSet !Stack | Nada
{--------------------------------------------------------------------
Eq
--------------------------------------------------------------------}
instance Eq IntSet where
t1 == t2 = equal t1 t2
t1 /= t2 = nequal t1 t2
equal :: IntSet -> IntSet -> Bool
equal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
= (m1 == m2) && (p1 == p2) && (equal l1 l2) && (equal r1 r2)
equal (Tip kx1 bm1) (Tip kx2 bm2)
= kx1 == kx2 && bm1 == bm2
equal Nil Nil = True
equal _ _ = False
nequal :: IntSet -> IntSet -> Bool
nequal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
= (m1 /= m2) || (p1 /= p2) || (nequal l1 l2) || (nequal r1 r2)
nequal (Tip kx1 bm1) (Tip kx2 bm2)
= kx1 /= kx2 || bm1 /= bm2
nequal Nil Nil = False
nequal _ _ = True
{--------------------------------------------------------------------
Ord
--------------------------------------------------------------------}
instance Ord IntSet where
compare s1 s2 = compare (toAscList s1) (toAscList s2)
-- tentative implementation. See if more efficient exists.
{--------------------------------------------------------------------
Show
--------------------------------------------------------------------}
instance Show IntSet where
showsPrec p xs = showParen (p > 10) $
showString "fromList " . shows (toList xs)
{--------------------------------------------------------------------
Read
--------------------------------------------------------------------}
instance Read IntSet where
#ifdef __GLASGOW_HASKELL__
readPrec = parens $ prec 10 $ do
Ident "fromList" <- lexP
xs <- readPrec
return (fromList xs)
readListPrec = readListPrecDefault
#else
readsPrec p = readParen (p > 10) $ \ r -> do
("fromList",s) <- lex r
(xs,t) <- reads s
return (fromList xs,t)
#endif
{--------------------------------------------------------------------
Typeable
--------------------------------------------------------------------}
INSTANCE_TYPEABLE0(IntSet,intSetTc,"IntSet")
{--------------------------------------------------------------------
NFData
--------------------------------------------------------------------}
-- The IntSet constructors consist only of strict fields of Ints and
-- IntSets, thus the default NFData instance which evaluates to whnf
-- should suffice
instance NFData IntSet where rnf x = seq x ()
{--------------------------------------------------------------------
Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the set. The tree is shown
-- in a compressed, hanging format.
showTree :: IntSet -> String
showTree s
= showTreeWith True False s
{- | /O(n)/. The expression (@'showTreeWith' hang wide map@) shows
the tree that implements the set. If @hang@ is
'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If
@wide@ is 'True', an extra wide version is shown.
-}
showTreeWith :: Bool -> Bool -> IntSet -> String
showTreeWith hang wide t
| hang = (showsTreeHang wide [] t) ""
| otherwise = (showsTree wide [] [] t) ""
showsTree :: Bool -> [String] -> [String] -> IntSet -> ShowS
showsTree wide lbars rbars t
= case t of
Bin p m l r
-> showsTree wide (withBar rbars) (withEmpty rbars) r .
showWide wide rbars .
showsBars lbars . showString (showBin p m) . showString "\n" .
showWide wide lbars .
showsTree wide (withEmpty lbars) (withBar lbars) l
Tip kx bm
-> showsBars lbars . showString " " . shows kx . showString " + " .
showsBitMap bm . showString "\n"
Nil -> showsBars lbars . showString "|\n"
showsTreeHang :: Bool -> [String] -> IntSet -> ShowS
showsTreeHang wide bars t
= case t of
Bin p m l r
-> showsBars bars . showString (showBin p m) . showString "\n" .
showWide wide bars .
showsTreeHang wide (withBar bars) l .
showWide wide bars .
showsTreeHang wide (withEmpty bars) r
Tip kx bm
-> showsBars bars . showString " " . shows kx . showString " + " .
showsBitMap bm . showString "\n"
Nil -> showsBars bars . showString "|\n"
showBin :: Prefix -> Mask -> String
showBin _ _
= "*" -- ++ show (p,m)
showWide :: Bool -> [String] -> String -> String
showWide wide bars
| wide = showString (concat (reverse bars)) . showString "|\n"
| otherwise = id
showsBars :: [String] -> ShowS
showsBars bars
= case bars of
[] -> id
_ -> showString (concat (reverse (tail bars))) . showString node
showsBitMap :: Word -> ShowS
showsBitMap = showString . showBitMap
showBitMap :: Word -> String
showBitMap w = show $ foldrBits 0 (:) [] w
node :: String
node = "+--"
withBar, withEmpty :: [String] -> [String]
withBar bars = "| ":bars
withEmpty bars = " ":bars
{--------------------------------------------------------------------
Helpers
--------------------------------------------------------------------}
{--------------------------------------------------------------------
Link
--------------------------------------------------------------------}
link :: Prefix -> IntSet -> Prefix -> IntSet -> IntSet
link p1 t1 p2 t2
| zero p1 m = Bin p m t1 t2
| otherwise = Bin p m t2 t1
where
m = branchMask p1 p2
p = mask p1 m
{-# INLINE link #-}
{--------------------------------------------------------------------
@bin@ assures that we never have empty trees within a tree.
--------------------------------------------------------------------}
bin :: Prefix -> Mask -> IntSet -> IntSet -> IntSet
bin _ _ l Nil = l
bin _ _ Nil r = r
bin p m l r = Bin p m l r
{-# INLINE bin #-}
{--------------------------------------------------------------------
@tip@ assures that we never have empty bitmaps within a tree.
--------------------------------------------------------------------}
tip :: Prefix -> BitMap -> IntSet
tip _ 0 = Nil
tip kx bm = Tip kx bm
{-# INLINE tip #-}
{----------------------------------------------------------------------
Functions that generate Prefix and BitMap of a Key or a Suffix.
----------------------------------------------------------------------}
suffixBitMask :: Int
#if MIN_VERSION_base(4,7,0)
suffixBitMask = finiteBitSize (undefined::Word) - 1
#else
suffixBitMask = bitSize (undefined::Word) - 1
#endif
{-# INLINE suffixBitMask #-}
prefixBitMask :: Int
prefixBitMask = complement suffixBitMask
{-# INLINE prefixBitMask #-}
prefixOf :: Int -> Prefix
prefixOf x = x .&. prefixBitMask
{-# INLINE prefixOf #-}
suffixOf :: Int -> Int
suffixOf x = x .&. suffixBitMask
{-# INLINE suffixOf #-}
bitmapOfSuffix :: Int -> BitMap
bitmapOfSuffix s = 1 `shiftLL` s
{-# INLINE bitmapOfSuffix #-}
bitmapOf :: Int -> BitMap
bitmapOf x = bitmapOfSuffix (suffixOf x)
{-# INLINE bitmapOf #-}
{--------------------------------------------------------------------
Endian independent bit twiddling
--------------------------------------------------------------------}
zero :: Int -> Mask -> Bool
zero i m
= (natFromInt i) .&. (natFromInt m) == 0
{-# INLINE zero #-}
nomatch,match :: Int -> Prefix -> Mask -> Bool
nomatch i p m
= (mask i m) /= p
{-# INLINE nomatch #-}
match i p m
= (mask i m) == p
{-# INLINE match #-}
-- Suppose a is largest such that 2^a divides 2*m.
-- Then mask i m is i with the low a bits zeroed out.
mask :: Int -> Mask -> Prefix
mask i m
= maskW (natFromInt i) (natFromInt m)
{-# INLINE mask #-}
{--------------------------------------------------------------------
Big endian operations
--------------------------------------------------------------------}
maskW :: Nat -> Nat -> Prefix
maskW i m
= intFromNat (i .&. (complement (m-1) `xor` m))
{-# INLINE maskW #-}
shorter :: Mask -> Mask -> Bool
shorter m1 m2
= (natFromInt m1) > (natFromInt m2)
{-# INLINE shorter #-}
branchMask :: Prefix -> Prefix -> Mask
branchMask p1 p2
= intFromNat (highestBitMask (natFromInt p1 `xor` natFromInt p2))
{-# INLINE branchMask #-}
{----------------------------------------------------------------------
To get best performance, we provide fast implementations of
lowestBitSet, highestBitSet and fold[lr][l]Bits for GHC.
If the intel bsf and bsr instructions ever become GHC primops,
this code should be reimplemented using these.
Performance of this code is crucial for folds, toList, filter, partition.
The signatures of methods in question are placed after this comment.
----------------------------------------------------------------------}
lowestBitSet :: Nat -> Int
highestBitSet :: Nat -> Int
foldlBits :: Int -> (a -> Int -> a) -> a -> Nat -> a
foldl'Bits :: Int -> (a -> Int -> a) -> a -> Nat -> a
foldrBits :: Int -> (Int -> a -> a) -> a -> Nat -> a
foldr'Bits :: Int -> (Int -> a -> a) -> a -> Nat -> a
{-# INLINE lowestBitSet #-}
{-# INLINE highestBitSet #-}
{-# INLINE foldlBits #-}
{-# INLINE foldl'Bits #-}
{-# INLINE foldrBits #-}
{-# INLINE foldr'Bits #-}
#if defined(__GLASGOW_HASKELL__) && (WORD_SIZE_IN_BITS==32 || WORD_SIZE_IN_BITS==64)
{----------------------------------------------------------------------
For lowestBitSet we use wordsize-dependant implementation based on
multiplication and DeBrujn indeces, which was proposed by Edward Kmett
<http://haskell.org/pipermail/libraries/2011-September/016749.html>
The core of this implementation is fast indexOfTheOnlyBit,
which is given a Nat with exactly one bit set, and returns
its index.
Lot of effort was put in these implementations, please benchmark carefully
before changing this code.
----------------------------------------------------------------------}
indexOfTheOnlyBit :: Nat -> Int
{-# INLINE indexOfTheOnlyBit #-}
indexOfTheOnlyBit bitmask =
I# (lsbArray `indexInt8OffAddr#` unboxInt (intFromNat ((bitmask * magic) `shiftRL` offset)))
where unboxInt (I# i) = i
#if WORD_SIZE_IN_BITS==32
magic = 0x077CB531
offset = 27
!lsbArray = "\0\1\28\2\29\14\24\3\30\22\20\15\25\17\4\8\31\27\13\23\21\19\16\7\26\12\18\6\11\5\10\9"#
#else
magic = 0x07EDD5E59A4E28C2
offset = 58
!lsbArray = "\63\0\58\1\59\47\53\2\60\39\48\27\54\33\42\3\61\51\37\40\49\18\28\20\55\30\34\11\43\14\22\4\62\57\46\52\38\26\32\41\50\36\17\19\29\10\13\21\56\45\25\31\35\16\9\12\44\24\15\8\23\7\6\5"#
#endif
-- The lsbArray gets inlined to every call site of indexOfTheOnlyBit.
-- That cannot be easily avoided, as GHC forbids top-level Addr# literal.
-- One could go around that by supplying getLsbArray :: () -> Addr# marked
-- as NOINLINE. But the code size of calling it and processing the result
-- is 48B on 32-bit and 56B on 64-bit architectures -- so the 32B and 64B array
-- is actually improvement on 32-bit and only a 8B size increase on 64-bit.
lowestBitMask :: Nat -> Nat
lowestBitMask x = x .&. negate x
{-# INLINE lowestBitMask #-}
-- Reverse the order of bits in the Nat.
revNat :: Nat -> Nat
#if WORD_SIZE_IN_BITS==32
revNat x1 = case ((x1 `shiftRL` 1) .&. 0x55555555) .|. ((x1 .&. 0x55555555) `shiftLL` 1) of
x2 -> case ((x2 `shiftRL` 2) .&. 0x33333333) .|. ((x2 .&. 0x33333333) `shiftLL` 2) of
x3 -> case ((x3 `shiftRL` 4) .&. 0x0F0F0F0F) .|. ((x3 .&. 0x0F0F0F0F) `shiftLL` 4) of
x4 -> case ((x4 `shiftRL` 8) .&. 0x00FF00FF) .|. ((x4 .&. 0x00FF00FF) `shiftLL` 8) of
x5 -> ( x5 `shiftRL` 16 ) .|. ( x5 `shiftLL` 16);
#else
revNat x1 = case ((x1 `shiftRL` 1) .&. 0x5555555555555555) .|. ((x1 .&. 0x5555555555555555) `shiftLL` 1) of
x2 -> case ((x2 `shiftRL` 2) .&. 0x3333333333333333) .|. ((x2 .&. 0x3333333333333333) `shiftLL` 2) of
x3 -> case ((x3 `shiftRL` 4) .&. 0x0F0F0F0F0F0F0F0F) .|. ((x3 .&. 0x0F0F0F0F0F0F0F0F) `shiftLL` 4) of
x4 -> case ((x4 `shiftRL` 8) .&. 0x00FF00FF00FF00FF) .|. ((x4 .&. 0x00FF00FF00FF00FF) `shiftLL` 8) of
x5 -> case ((x5 `shiftRL` 16) .&. 0x0000FFFF0000FFFF) .|. ((x5 .&. 0x0000FFFF0000FFFF) `shiftLL` 16) of
x6 -> ( x6 `shiftRL` 32 ) .|. ( x6 `shiftLL` 32);
#endif
lowestBitSet x = indexOfTheOnlyBit (lowestBitMask x)
highestBitSet x = indexOfTheOnlyBit (highestBitMask x)
foldlBits prefix f z bitmap = go bitmap z
where go bm acc | bm == 0 = acc
| otherwise = case lowestBitMask bm of
bitmask -> bitmask `seq` case indexOfTheOnlyBit bitmask of
bi -> bi `seq` go (bm `xor` bitmask) ((f acc) $! (prefix+bi))
foldl'Bits prefix f z bitmap = go bitmap z
where STRICT_2_OF_2(go)
go bm acc | bm == 0 = acc
| otherwise = case lowestBitMask bm of
bitmask -> bitmask `seq` case indexOfTheOnlyBit bitmask of
bi -> bi `seq` go (bm `xor` bitmask) ((f acc) $! (prefix+bi))
foldrBits prefix f z bitmap = go (revNat bitmap) z
where go bm acc | bm == 0 = acc
| otherwise = case lowestBitMask bm of
bitmask -> bitmask `seq` case indexOfTheOnlyBit bitmask of
bi -> bi `seq` go (bm `xor` bitmask) ((f $! (prefix+(WORD_SIZE_IN_BITS-1)-bi)) acc)
foldr'Bits prefix f z bitmap = go (revNat bitmap) z
where STRICT_2_OF_2(go)
go bm acc | bm == 0 = acc
| otherwise = case lowestBitMask bm of
bitmask -> bitmask `seq` case indexOfTheOnlyBit bitmask of
bi -> bi `seq` go (bm `xor` bitmask) ((f $! (prefix+(WORD_SIZE_IN_BITS-1)-bi)) acc)
#else
{----------------------------------------------------------------------
In general case we use logarithmic implementation of
lowestBitSet and highestBitSet, which works up to bit sizes of 64.
Folds are linear scans.
----------------------------------------------------------------------}
lowestBitSet n0 =
let (n1,b1) = if n0 .&. 0xFFFFFFFF /= 0 then (n0,0) else (n0 `shiftRL` 32, 32)
(n2,b2) = if n1 .&. 0xFFFF /= 0 then (n1,b1) else (n1 `shiftRL` 16, 16+b1)
(n3,b3) = if n2 .&. 0xFF /= 0 then (n2,b2) else (n2 `shiftRL` 8, 8+b2)
(n4,b4) = if n3 .&. 0xF /= 0 then (n3,b3) else (n3 `shiftRL` 4, 4+b3)
(n5,b5) = if n4 .&. 0x3 /= 0 then (n4,b4) else (n4 `shiftRL` 2, 2+b4)
b6 = if n5 .&. 0x1 /= 0 then b5 else 1+b5
in b6
highestBitSet n0 =
let (n1,b1) = if n0 .&. 0xFFFFFFFF00000000 /= 0 then (n0 `shiftRL` 32, 32) else (n0,0)
(n2,b2) = if n1 .&. 0xFFFF0000 /= 0 then (n1 `shiftRL` 16, 16+b1) else (n1,b1)
(n3,b3) = if n2 .&. 0xFF00 /= 0 then (n2 `shiftRL` 8, 8+b2) else (n2,b2)
(n4,b4) = if n3 .&. 0xF0 /= 0 then (n3 `shiftRL` 4, 4+b3) else (n3,b3)
(n5,b5) = if n4 .&. 0xC /= 0 then (n4 `shiftRL` 2, 2+b4) else (n4,b4)
b6 = if n5 .&. 0x2 /= 0 then 1+b5 else b5
in b6
foldlBits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) z (bm `shiftRL` lb)
where STRICT_1_OF_3(go)
go _ acc 0 = acc
go bi acc n | n `testBit` 0 = go (bi + 1) (f acc bi) (n `shiftRL` 1)
| otherwise = go (bi + 1) acc (n `shiftRL` 1)
foldl'Bits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) z (bm `shiftRL` lb)
where STRICT_1_OF_3(go)
STRICT_2_OF_3(go)
go _ acc 0 = acc
go bi acc n | n `testBit` 0 = go (bi + 1) (f acc bi) (n `shiftRL` 1)
| otherwise = go (bi + 1) acc (n `shiftRL` 1)
foldrBits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) (bm `shiftRL` lb)
where STRICT_1_OF_2(go)
go _ 0 = z
go bi n | n `testBit` 0 = f bi (go (bi + 1) (n `shiftRL` 1))
| otherwise = go (bi + 1) (n `shiftRL` 1)
foldr'Bits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) (bm `shiftRL` lb)
where STRICT_1_OF_2(go)
go _ 0 = z
go bi n | n `testBit` 0 = f bi $! go (bi + 1) (n `shiftRL` 1)
| otherwise = go (bi + 1) (n `shiftRL` 1)
#endif
{----------------------------------------------------------------------
[bitcount] as posted by David F. Place to haskell-cafe on April 11, 2006,
based on the code on
http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan,
where the following source is given:
Published in 1988, the C Programming Language 2nd Ed. (by Brian W.
Kernighan and Dennis M. Ritchie) mentions this in exercise 2-9. On April
19, 2006 Don Knuth pointed out to me that this method "was first published
by Peter Wegner in CACM 3 (1960), 322. (Also discovered independently by
Derrick Lehmer and published in 1964 in a book edited by Beckenbach.)"
----------------------------------------------------------------------}
bitcount :: Int -> Word -> Int
#if MIN_VERSION_base(4,5,0)
bitcount a x = a + popCount x
#else
bitcount a0 x0 = go a0 x0
where go a 0 = a
go a x = go (a + 1) (x .&. (x-1))
#endif
{-# INLINE bitcount #-}
{--------------------------------------------------------------------
Utilities
--------------------------------------------------------------------}
-- | /O(1)/. Decompose a set into pieces based on the structure of the underlying
-- tree. This function is useful for consuming a set in parallel.
--
-- No guarantee is made as to the sizes of the pieces; an internal, but
-- deterministic process determines this. However, it is guaranteed that the
-- pieces returned will be in ascending order (all elements in the first submap
-- less than all elements in the second, and so on).
--
-- Examples:
--
-- > splitRoot (fromList [1..120]) == [fromList [1..63],fromList [64..120]]
-- > splitRoot empty == []
--
-- Note that the current implementation does not return more than two subsets,
-- but you should not depend on this behaviour because it can change in the
-- future without notice. Also, the current version does not continue
-- splitting all the way to individual singleton sets -- it stops at some
-- point.
splitRoot :: IntSet -> [IntSet]
splitRoot orig =
case orig of
Nil -> []
-- NOTE: we don't currently split below Tip, but we could.
x@(Tip _ _) -> [x]
Bin _ m l r | m < 0 -> [r, l]
| otherwise -> [l, r]
{-# INLINE splitRoot #-}
|