File: Base.hs

package info (click to toggle)
ghc 8.0.1-17
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 55,080 kB
  • ctags: 9,332
  • sloc: haskell: 363,120; ansic: 54,900; sh: 4,782; makefile: 974; perl: 542; asm: 315; python: 306; xml: 154; lisp: 7
file content (2928 lines) | stat: -rw-r--r-- 111,827 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__
{-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-}
#endif
#if !defined(TESTING) && __GLASGOW_HASKELL__ >= 703
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE TypeFamilies #-}
#endif

#include "containers.h"

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Map.Base
-- Copyright   :  (c) Daan Leijen 2002
--                (c) Andriy Palamarchuk 2008
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- An efficient implementation of maps from keys to values (dictionaries).
--
-- Since many function names (but not the type name) clash with
-- "Prelude" names, this module is usually imported @qualified@, e.g.
--
-- >  import Data.Map (Map)
-- >  import qualified Data.Map as Map
--
-- The implementation of 'Map' is based on /size balanced/ binary trees (or
-- trees of /bounded balance/) as described by:
--
--    * Stephen Adams, \"/Efficient sets: a balancing act/\",
--     Journal of Functional Programming 3(4):553-562, October 1993,
--     <http://www.swiss.ai.mit.edu/~adams/BB/>.
--
--    * J. Nievergelt and E.M. Reingold,
--      \"/Binary search trees of bounded balance/\",
--      SIAM journal of computing 2(1), March 1973.
--
-- Note that the implementation is /left-biased/ -- the elements of a
-- first argument are always preferred to the second, for example in
-- 'union' or 'insert'.
--
-- Operation comments contain the operation time complexity in
-- the Big-O notation <http://en.wikipedia.org/wiki/Big_O_notation>.
-----------------------------------------------------------------------------

-- [Note: Using INLINABLE]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- It is crucial to the performance that the functions specialize on the Ord
-- type when possible. GHC 7.0 and higher does this by itself when it sees th
-- unfolding of a function -- that is why all public functions are marked
-- INLINABLE (that exposes the unfolding).


-- [Note: Using INLINE]
-- ~~~~~~~~~~~~~~~~~~~~
-- For other compilers and GHC pre 7.0, we mark some of the functions INLINE.
-- We mark the functions that just navigate down the tree (lookup, insert,
-- delete and similar). That navigation code gets inlined and thus specialized
-- when possible. There is a price to pay -- code growth. The code INLINED is
-- therefore only the tree navigation, all the real work (rebalancing) is not
-- INLINED by using a NOINLINE.
--
-- All methods marked INLINE have to be nonrecursive -- a 'go' function doing
-- the real work is provided.


-- [Note: Type of local 'go' function]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- If the local 'go' function uses an Ord class, it sometimes heap-allocates
-- the Ord dictionary when the 'go' function does not have explicit type.
-- In that case we give 'go' explicit type. But this slightly decrease
-- performance, as the resulting 'go' function can float out to top level.


-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- As opposed to Map, when 'go' function captures an argument, increased
-- heap-allocation can occur: sometimes in a polymorphic function, the 'go'
-- floats out of its enclosing function and then it heap-allocates the
-- dictionary and the argument. Maybe it floats out too late and strictness
-- analyzer cannot see that these could be passed on stack.
--
-- For example, change 'member' so that its local 'go' function is not passing
-- argument k and then look at the resulting code for hedgeInt.


-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of Map matters when considering performance.
-- Currently in GHC 7.0, when type has 2 constructors, a forward conditional
-- jump is made when successfully matching second constructor. Successful match
-- of first constructor results in the forward jump not taken.
-- On GHC 7.0, reordering constructors from Tip | Bin to Bin | Tip
-- improves the benchmark by up to 10% on x86.

module Data.Map.Base (
    -- * Map type
      Map(..)          -- instance Eq,Show,Read

    -- * Operators
    , (!), (\\)

    -- * Query
    , null
    , size
    , member
    , notMember
    , lookup
    , findWithDefault
    , lookupLT
    , lookupGT
    , lookupLE
    , lookupGE

    -- * Construction
    , empty
    , singleton

    -- ** Insertion
    , insert
    , insertWith
    , insertWithKey
    , insertLookupWithKey

    -- ** Delete\/Update
    , delete
    , adjust
    , adjustWithKey
    , update
    , updateWithKey
    , updateLookupWithKey
    , alter

    -- * Combine

    -- ** Union
    , union
    , unionWith
    , unionWithKey
    , unions
    , unionsWith

    -- ** Difference
    , difference
    , differenceWith
    , differenceWithKey

    -- ** Intersection
    , intersection
    , intersectionWith
    , intersectionWithKey

    -- ** Universal combining function
    , mergeWithKey

    -- * Traversal
    -- ** Map
    , map
    , mapWithKey
    , traverseWithKey
    , mapAccum
    , mapAccumWithKey
    , mapAccumRWithKey
    , mapKeys
    , mapKeysWith
    , mapKeysMonotonic

    -- * Folds
    , foldr
    , foldl
    , foldrWithKey
    , foldlWithKey
    , foldMapWithKey

    -- ** Strict folds
    , foldr'
    , foldl'
    , foldrWithKey'
    , foldlWithKey'

    -- * Conversion
    , elems
    , keys
    , assocs
    , keysSet
    , fromSet

    -- ** Lists
    , toList
    , fromList
    , fromListWith
    , fromListWithKey

    -- ** Ordered lists
    , toAscList
    , toDescList
    , fromAscList
    , fromAscListWith
    , fromAscListWithKey
    , fromDistinctAscList

    -- * Filter
    , filter
    , filterWithKey
    , partition
    , partitionWithKey

    , mapMaybe
    , mapMaybeWithKey
    , mapEither
    , mapEitherWithKey

    , split
    , splitLookup
    , splitRoot

    -- * Submap
    , isSubmapOf, isSubmapOfBy
    , isProperSubmapOf, isProperSubmapOfBy

    -- * Indexed
    , lookupIndex
    , findIndex
    , elemAt
    , updateAt
    , deleteAt

    -- * Min\/Max
    , findMin
    , findMax
    , deleteMin
    , deleteMax
    , deleteFindMin
    , deleteFindMax
    , updateMin
    , updateMax
    , updateMinWithKey
    , updateMaxWithKey
    , minView
    , maxView
    , minViewWithKey
    , maxViewWithKey

    -- * Debugging
    , showTree
    , showTreeWith
    , valid

    -- Used by the strict version
    , bin
    , balance
    , balanced
    , balanceL
    , balanceR
    , delta
    , link
    , insertMax
    , merge
    , glue
    , trim
    , trimLookupLo
    , MaybeS(..)
    , filterGt
    , filterLt
    ) where

#if !(MIN_VERSION_base(4,8,0))
import Control.Applicative (Applicative(..), (<$>))
import Data.Monoid (Monoid(..))
import Data.Traversable (Traversable(traverse))
#endif
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup((<>), stimes), stimesIdempotentMonoid)
#endif

import Control.DeepSeq (NFData(rnf))
import Data.Bits (shiftL, shiftR)
import qualified Data.Foldable as Foldable
import Data.Typeable
import Prelude hiding (lookup, map, filter, foldr, foldl, null)

import qualified Data.Set.Base as Set
import Data.Utils.StrictFold
import Data.Utils.StrictPair

#if __GLASGOW_HASKELL__
import GHC.Exts ( build )
#if __GLASGOW_HASKELL__ >= 708
import qualified GHC.Exts as GHCExts
#endif
import Text.Read
import Data.Data
#endif
#if __GLASGOW_HASKELL__ >= 709
import Data.Coerce
#endif


{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}
infixl 9 !,\\ --

-- | /O(log n)/. Find the value at a key.
-- Calls 'error' when the element can not be found.
--
-- > fromList [(5,'a'), (3,'b')] ! 1    Error: element not in the map
-- > fromList [(5,'a'), (3,'b')] ! 5 == 'a'

(!) :: Ord k => Map k a -> k -> a
m ! k = find k m
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE (!) #-}
#endif

-- | Same as 'difference'.
(\\) :: Ord k => Map k a -> Map k b -> Map k a
m1 \\ m2 = difference m1 m2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE (\\) #-}
#endif

{--------------------------------------------------------------------
  Size balanced trees.
--------------------------------------------------------------------}
-- | A Map from keys @k@ to values @a@.

-- See Note: Order of constructors
data Map k a  = Bin {-# UNPACK #-} !Size !k a !(Map k a) !(Map k a)
              | Tip

type Size     = Int

#if __GLASGOW_HASKELL__ >= 708
type role Map nominal representational
#endif

instance (Ord k) => Monoid (Map k v) where
    mempty  = empty
    mconcat = unions
#if !(MIN_VERSION_base(4,9,0))
    mappend = union
#else
    mappend = (<>)

instance (Ord k) => Semigroup (Map k v) where
    (<>)    = union
    stimes  = stimesIdempotentMonoid
#endif

#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.

instance (Data k, Data a, Ord k) => Data (Map k a) where
  gfoldl f z m   = z fromList `f` toList m
  toConstr _     = fromListConstr
  gunfold k z c  = case constrIndex c of
    1 -> k (z fromList)
    _ -> error "gunfold"
  dataTypeOf _   = mapDataType
  dataCast2 f    = gcast2 f

fromListConstr :: Constr
fromListConstr = mkConstr mapDataType "fromList" [] Prefix

mapDataType :: DataType
mapDataType = mkDataType "Data.Map.Base.Map" [fromListConstr]

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | /O(1)/. Is the map empty?
--
-- > Data.Map.null (empty)           == True
-- > Data.Map.null (singleton 1 'a') == False

null :: Map k a -> Bool
null Tip      = True
null (Bin {}) = False
{-# INLINE null #-}

-- | /O(1)/. The number of elements in the map.
--
-- > size empty                                   == 0
-- > size (singleton 1 'a')                       == 1
-- > size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3

size :: Map k a -> Int
size Tip              = 0
size (Bin sz _ _ _ _) = sz
{-# INLINE size #-}


-- | /O(log n)/. Lookup the value at a key in the map.
--
-- The function will return the corresponding value as @('Just' value)@,
-- or 'Nothing' if the key isn't in the map.
--
-- An example of using @lookup@:
--
-- > import Prelude hiding (lookup)
-- > import Data.Map
-- >
-- > employeeDept = fromList([("John","Sales"), ("Bob","IT")])
-- > deptCountry = fromList([("IT","USA"), ("Sales","France")])
-- > countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])
-- >
-- > employeeCurrency :: String -> Maybe String
-- > employeeCurrency name = do
-- >     dept <- lookup name employeeDept
-- >     country <- lookup dept deptCountry
-- >     lookup country countryCurrency
-- >
-- > main = do
-- >     putStrLn $ "John's currency: " ++ (show (employeeCurrency "John"))
-- >     putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))
--
-- The output of this program:
--
-- >   John's currency: Just "Euro"
-- >   Pete's currency: Nothing
lookup :: Ord k => k -> Map k a -> Maybe a
lookup = go
  where
    STRICT_1_OF_2(go)
    go _ Tip = Nothing
    go k (Bin _ kx x l r) = case compare k kx of
      LT -> go k l
      GT -> go k r
      EQ -> Just x
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookup #-}
#else
{-# INLINE lookup #-}
#endif

-- | /O(log n)/. Is the key a member of the map? See also 'notMember'.
--
-- > member 5 (fromList [(5,'a'), (3,'b')]) == True
-- > member 1 (fromList [(5,'a'), (3,'b')]) == False
member :: Ord k => k -> Map k a -> Bool
member = go
  where
    STRICT_1_OF_2(go)
    go _ Tip = False
    go k (Bin _ kx _ l r) = case compare k kx of
      LT -> go k l
      GT -> go k r
      EQ -> True
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE member #-}
#else
{-# INLINE member #-}
#endif

-- | /O(log n)/. Is the key not a member of the map? See also 'member'.
--
-- > notMember 5 (fromList [(5,'a'), (3,'b')]) == False
-- > notMember 1 (fromList [(5,'a'), (3,'b')]) == True

notMember :: Ord k => k -> Map k a -> Bool
notMember k m = not $ member k m
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE notMember #-}
#else
{-# INLINE notMember #-}
#endif

-- | /O(log n)/. Find the value at a key.
-- Calls 'error' when the element can not be found.
find :: Ord k => k -> Map k a -> a
find = go
  where
    STRICT_1_OF_2(go)
    go _ Tip = error "Map.!: given key is not an element in the map"
    go k (Bin _ kx x l r) = case compare k kx of
      LT -> go k l
      GT -> go k r
      EQ -> x
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE find #-}
#else
{-# INLINE find #-}
#endif

-- | /O(log n)/. The expression @('findWithDefault' def k map)@ returns
-- the value at key @k@ or returns default value @def@
-- when the key is not in the map.
--
-- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
-- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'
findWithDefault :: Ord k => a -> k -> Map k a -> a
findWithDefault = go
  where
    STRICT_2_OF_3(go)
    go def _ Tip = def
    go def k (Bin _ kx x l r) = case compare k kx of
      LT -> go def k l
      GT -> go def k r
      EQ -> x
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE findWithDefault #-}
#else
{-# INLINE findWithDefault #-}
#endif

-- | /O(log n)/. Find largest key smaller than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
lookupLT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLT = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing k (Bin _ kx x l r) | k <= kx = goNothing k l
                                 | otherwise = goJust k kx x r

    STRICT_1_OF_4(goJust)
    goJust _ kx' x' Tip = Just (kx', x')
    goJust k kx' x' (Bin _ kx x l r) | k <= kx = goJust k kx' x' l
                                     | otherwise = goJust k kx x r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupLT #-}
#else
{-# INLINE lookupLT #-}
#endif

-- | /O(log n)/. Find smallest key greater than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing
lookupGT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGT = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing k (Bin _ kx x l r) | k < kx = goJust k kx x l
                                 | otherwise = goNothing k r

    STRICT_1_OF_4(goJust)
    goJust _ kx' x' Tip = Just (kx', x')
    goJust k kx' x' (Bin _ kx x l r) | k < kx = goJust k kx x l
                                     | otherwise = goJust k kx' x' r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupGT #-}
#else
{-# INLINE lookupGT #-}
#endif

-- | /O(log n)/. Find largest key smaller or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
lookupLE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLE = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing k (Bin _ kx x l r) = case compare k kx of LT -> goNothing k l
                                                        EQ -> Just (kx, x)
                                                        GT -> goJust k kx x r

    STRICT_1_OF_4(goJust)
    goJust _ kx' x' Tip = Just (kx', x')
    goJust k kx' x' (Bin _ kx x l r) = case compare k kx of LT -> goJust k kx' x' l
                                                            EQ -> Just (kx, x)
                                                            GT -> goJust k kx x r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupLE #-}
#else
{-# INLINE lookupLE #-}
#endif

-- | /O(log n)/. Find smallest key greater or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing
lookupGE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGE = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing k (Bin _ kx x l r) = case compare k kx of LT -> goJust k kx x l
                                                        EQ -> Just (kx, x)
                                                        GT -> goNothing k r

    STRICT_1_OF_4(goJust)
    goJust _ kx' x' Tip = Just (kx', x')
    goJust k kx' x' (Bin _ kx x l r) = case compare k kx of LT -> goJust k kx x l
                                                            EQ -> Just (kx, x)
                                                            GT -> goJust k kx' x' r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupGE #-}
#else
{-# INLINE lookupGE #-}
#endif

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty map.
--
-- > empty      == fromList []
-- > size empty == 0

empty :: Map k a
empty = Tip
{-# INLINE empty #-}

-- | /O(1)/. A map with a single element.
--
-- > singleton 1 'a'        == fromList [(1, 'a')]
-- > size (singleton 1 'a') == 1

singleton :: k -> a -> Map k a
singleton k x = Bin 1 k x Tip Tip
{-# INLINE singleton #-}

{--------------------------------------------------------------------
  Insertion
--------------------------------------------------------------------}
-- | /O(log n)/. Insert a new key and value in the map.
-- If the key is already present in the map, the associated value is
-- replaced with the supplied value. 'insert' is equivalent to
-- @'insertWith' 'const'@.
--
-- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')]
-- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')]
-- > insert 5 'x' empty                         == singleton 5 'x'

-- See Note: Type of local 'go' function
insert :: Ord k => k -> a -> Map k a -> Map k a
insert = go
  where
    go :: Ord k => k -> a -> Map k a -> Map k a
    STRICT_1_OF_3(go)
    go kx x Tip = singleton kx x
    go kx x (Bin sz ky y l r) =
        case compare kx ky of
            LT -> balanceL ky y (go kx x l) r
            GT -> balanceR ky y l (go kx x r)
            EQ -> Bin sz kx x l r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE insert #-}
#else
{-# INLINE insert #-}
#endif

-- Insert a new key and value in the map if it is not already present.
-- Used by `union`.

-- See Note: Type of local 'go' function
insertR :: Ord k => k -> a -> Map k a -> Map k a
insertR = go
  where
    go :: Ord k => k -> a -> Map k a -> Map k a
    STRICT_1_OF_3(go)
    go kx x Tip = singleton kx x
    go kx x t@(Bin _ ky y l r) =
        case compare kx ky of
            LT -> balanceL ky y (go kx x l) r
            GT -> balanceR ky y l (go kx x r)
            EQ -> t
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE insertR #-}
#else
{-# INLINE insertR #-}
#endif

-- | /O(log n)/. Insert with a function, combining new value and old value.
-- @'insertWith' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert the pair @(key, f new_value old_value)@.
--
-- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]
-- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWith (++) 5 "xxx" empty                         == singleton 5 "xxx"

insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith f = insertWithKey (\_ x' y' -> f x' y')
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE insertWith #-}
#else
{-# INLINE insertWith #-}
#endif

-- | /O(log n)/. Insert with a function, combining key, new value and old value.
-- @'insertWithKey' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert the pair @(key,f key new_value old_value)@.
-- Note that the key passed to f is the same key passed to 'insertWithKey'.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]
-- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWithKey f 5 "xxx" empty                         == singleton 5 "xxx"

-- See Note: Type of local 'go' function
insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey = go
  where
    go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
    STRICT_2_OF_4(go)
    go _ kx x Tip = singleton kx x
    go f kx x (Bin sy ky y l r) =
        case compare kx ky of
            LT -> balanceL ky y (go f kx x l) r
            GT -> balanceR ky y l (go f kx x r)
            EQ -> Bin sy kx (f kx x y) l r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE insertWithKey #-}
#else
{-# INLINE insertWithKey #-}
#endif

-- | /O(log n)/. Combines insert operation with old value retrieval.
-- The expression (@'insertLookupWithKey' f k x map@)
-- is a pair where the first element is equal to (@'lookup' k map@)
-- and the second element equal to (@'insertWithKey' f k x map@).
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])
-- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "xxx")])
-- > insertLookupWithKey f 5 "xxx" empty                         == (Nothing,  singleton 5 "xxx")
--
-- This is how to define @insertLookup@ using @insertLookupWithKey@:
--
-- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t
-- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])
-- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "x")])

-- See Note: Type of local 'go' function
insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a
                    -> (Maybe a, Map k a)
insertLookupWithKey = go
  where
    go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a)
    STRICT_2_OF_4(go)
    go _ kx x Tip = (Nothing, singleton kx x)
    go f kx x (Bin sy ky y l r) =
        case compare kx ky of
            LT -> let (found, l') = go f kx x l
                  in (found, balanceL ky y l' r)
            GT -> let (found, r') = go f kx x r
                  in (found, balanceR ky y l r')
            EQ -> (Just y, Bin sy kx (f kx x y) l r)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE insertLookupWithKey #-}
#else
{-# INLINE insertLookupWithKey #-}
#endif

{--------------------------------------------------------------------
  Deletion
--------------------------------------------------------------------}
-- | /O(log n)/. Delete a key and its value from the map. When the key is not
-- a member of the map, the original map is returned.
--
-- > delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > delete 5 empty                         == empty

-- See Note: Type of local 'go' function
delete :: Ord k => k -> Map k a -> Map k a
delete = go
  where
    go :: Ord k => k -> Map k a -> Map k a
    STRICT_1_OF_2(go)
    go _ Tip = Tip
    go k (Bin _ kx x l r) =
        case compare k kx of
            LT -> balanceR kx x (go k l) r
            GT -> balanceL kx x l (go k r)
            EQ -> glue l r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE delete #-}
#else
{-# INLINE delete #-}
#endif

-- | /O(log n)/. Update a value at a specific key with the result of the provided function.
-- When the key is not
-- a member of the map, the original map is returned.
--
-- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjust ("new " ++) 7 empty                         == empty

adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust f = adjustWithKey (\_ x -> f x)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE adjust #-}
#else
{-# INLINE adjust #-}
#endif

-- | /O(log n)/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > let f key x = (show key) ++ ":new " ++ x
-- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjustWithKey f 7 empty                         == empty

adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey f = updateWithKey (\k' x' -> Just (f k' x'))
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE adjustWithKey #-}
#else
{-# INLINE adjustWithKey #-}
#endif

-- | /O(log n)/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update f = updateWithKey (\_ x -> f x)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE update #-}
#else
{-# INLINE update #-}
#endif

-- | /O(log n)/. The expression (@'updateWithKey' f k map@) updates the
-- value @x@ at @k@ (if it is in the map). If (@f k x@) is 'Nothing',
-- the element is deleted. If it is (@'Just' y@), the key @k@ is bound
-- to the new value @y@.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

-- See Note: Type of local 'go' function
updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey = go
  where
    go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
    STRICT_2_OF_3(go)
    go _ _ Tip = Tip
    go f k(Bin sx kx x l r) =
        case compare k kx of
           LT -> balanceR kx x (go f k l) r
           GT -> balanceL kx x l (go f k r)
           EQ -> case f kx x of
                   Just x' -> Bin sx kx x' l r
                   Nothing -> glue l r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE updateWithKey #-}
#else
{-# INLINE updateWithKey #-}
#endif

-- | /O(log n)/. Lookup and update. See also 'updateWithKey'.
-- The function returns changed value, if it is updated.
-- Returns the original key value if the map entry is deleted.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "5:new a", fromList [(3, "b"), (5, "5:new a")])
-- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a")])
-- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

-- See Note: Type of local 'go' function
updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a)
updateLookupWithKey = go
 where
   go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a)
   STRICT_2_OF_3(go)
   go _ _ Tip = (Nothing,Tip)
   go f k (Bin sx kx x l r) =
          case compare k kx of
               LT -> let (found,l') = go f k l in (found,balanceR kx x l' r)
               GT -> let (found,r') = go f k r in (found,balanceL kx x l r')
               EQ -> case f kx x of
                       Just x' -> (Just x',Bin sx kx x' l r)
                       Nothing -> (Just x,glue l r)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE updateLookupWithKey #-}
#else
{-# INLINE updateLookupWithKey #-}
#endif

-- | /O(log n)/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof.
-- 'alter' can be used to insert, delete, or update a value in a 'Map'.
-- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
--
-- > let f _ = Nothing
-- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- >
-- > let f _ = Just "c"
-- > alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")]
-- > alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")]

-- See Note: Type of local 'go' function
alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter = go
  where
    go :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
    STRICT_2_OF_3(go)
    go f k Tip = case f Nothing of
               Nothing -> Tip
               Just x  -> singleton k x

    go f k (Bin sx kx x l r) = case compare k kx of
               LT -> balance kx x (go f k l) r
               GT -> balance kx x l (go f k r)
               EQ -> case f (Just x) of
                       Just x' -> Bin sx kx x' l r
                       Nothing -> glue l r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE alter #-}
#else
{-# INLINE alter #-}
#endif

{--------------------------------------------------------------------
  Indexing
--------------------------------------------------------------------}
-- | /O(log n)/. Return the /index/ of a key, which is its zero-based index in
-- the sequence sorted by keys. The index is a number from /0/ up to, but not
-- including, the 'size' of the map. Calls 'error' when the key is not
-- a 'member' of the map.
--
-- > findIndex 2 (fromList [(5,"a"), (3,"b")])    Error: element is not in the map
-- > findIndex 3 (fromList [(5,"a"), (3,"b")]) == 0
-- > findIndex 5 (fromList [(5,"a"), (3,"b")]) == 1
-- > findIndex 6 (fromList [(5,"a"), (3,"b")])    Error: element is not in the map

-- See Note: Type of local 'go' function
findIndex :: Ord k => k -> Map k a -> Int
findIndex = go 0
  where
    go :: Ord k => Int -> k -> Map k a -> Int
    STRICT_1_OF_3(go)
    STRICT_2_OF_3(go)
    go _   _ Tip  = error "Map.findIndex: element is not in the map"
    go idx k (Bin _ kx _ l r) = case compare k kx of
      LT -> go idx k l
      GT -> go (idx + size l + 1) k r
      EQ -> idx + size l
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE findIndex #-}
#endif

-- | /O(log n)/. Lookup the /index/ of a key, which is its zero-based index in
-- the sequence sorted by keys. The index is a number from /0/ up to, but not
-- including, the 'size' of the map.
--
-- > isJust (lookupIndex 2 (fromList [(5,"a"), (3,"b")]))   == False
-- > fromJust (lookupIndex 3 (fromList [(5,"a"), (3,"b")])) == 0
-- > fromJust (lookupIndex 5 (fromList [(5,"a"), (3,"b")])) == 1
-- > isJust (lookupIndex 6 (fromList [(5,"a"), (3,"b")]))   == False

-- See Note: Type of local 'go' function
lookupIndex :: Ord k => k -> Map k a -> Maybe Int
lookupIndex = go 0
  where
    go :: Ord k => Int -> k -> Map k a -> Maybe Int
    STRICT_1_OF_3(go)
    STRICT_2_OF_3(go)
    go _   _ Tip  = Nothing
    go idx k (Bin _ kx _ l r) = case compare k kx of
      LT -> go idx k l
      GT -> go (idx + size l + 1) k r
      EQ -> Just $! idx + size l
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupIndex #-}
#endif

-- | /O(log n)/. Retrieve an element by its /index/, i.e. by its zero-based
-- index in the sequence sorted by keys. If the /index/ is out of range (less
-- than zero, greater or equal to 'size' of the map), 'error' is called.
--
-- > elemAt 0 (fromList [(5,"a"), (3,"b")]) == (3,"b")
-- > elemAt 1 (fromList [(5,"a"), (3,"b")]) == (5, "a")
-- > elemAt 2 (fromList [(5,"a"), (3,"b")])    Error: index out of range

elemAt :: Int -> Map k a -> (k,a)
STRICT_1_OF_2(elemAt)
elemAt _ Tip = error "Map.elemAt: index out of range"
elemAt i (Bin _ kx x l r)
  = case compare i sizeL of
      LT -> elemAt i l
      GT -> elemAt (i-sizeL-1) r
      EQ -> (kx,x)
  where
    sizeL = size l

-- | /O(log n)/. Update the element at /index/, i.e. by its zero-based index in
-- the sequence sorted by keys. If the /index/ is out of range (less than zero,
-- greater or equal to 'size' of the map), 'error' is called.
--
-- > updateAt (\ _ _ -> Just "x") 0    (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")]
-- > updateAt (\ _ _ -> Just "x") 1    (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")]
-- > updateAt (\ _ _ -> Just "x") 2    (fromList [(5,"a"), (3,"b")])    Error: index out of range
-- > updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")])    Error: index out of range
-- > updateAt (\_ _  -> Nothing)  0    (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
-- > updateAt (\_ _  -> Nothing)  1    (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > updateAt (\_ _  -> Nothing)  2    (fromList [(5,"a"), (3,"b")])    Error: index out of range
-- > updateAt (\_ _  -> Nothing)  (-1) (fromList [(5,"a"), (3,"b")])    Error: index out of range

updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a
updateAt f i t = i `seq`
  case t of
    Tip -> error "Map.updateAt: index out of range"
    Bin sx kx x l r -> case compare i sizeL of
      LT -> balanceR kx x (updateAt f i l) r
      GT -> balanceL kx x l (updateAt f (i-sizeL-1) r)
      EQ -> case f kx x of
              Just x' -> Bin sx kx x' l r
              Nothing -> glue l r
      where
        sizeL = size l

-- | /O(log n)/. Delete the element at /index/, i.e. by its zero-based index in
-- the sequence sorted by keys. If the /index/ is out of range (less than zero,
-- greater or equal to 'size' of the map), 'error' is called.
--
-- > deleteAt 0  (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
-- > deleteAt 1  (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > deleteAt 2 (fromList [(5,"a"), (3,"b")])     Error: index out of range
-- > deleteAt (-1) (fromList [(5,"a"), (3,"b")])  Error: index out of range

deleteAt :: Int -> Map k a -> Map k a
deleteAt i t = i `seq`
  case t of
    Tip -> error "Map.deleteAt: index out of range"
    Bin _ kx x l r -> case compare i sizeL of
      LT -> balanceR kx x (deleteAt i l) r
      GT -> balanceL kx x l (deleteAt (i-sizeL-1) r)
      EQ -> glue l r
      where
        sizeL = size l


{--------------------------------------------------------------------
  Minimal, Maximal
--------------------------------------------------------------------}
-- | /O(log n)/. The minimal key of the map. Calls 'error' if the map is empty.
--
-- > findMin (fromList [(5,"a"), (3,"b")]) == (3,"b")
-- > findMin empty                            Error: empty map has no minimal element

findMin :: Map k a -> (k,a)
findMin (Bin _ kx x Tip _)  = (kx,x)
findMin (Bin _ _  _ l _)    = findMin l
findMin Tip                 = error "Map.findMin: empty map has no minimal element"

-- | /O(log n)/. The maximal key of the map. Calls 'error' if the map is empty.
--
-- > findMax (fromList [(5,"a"), (3,"b")]) == (5,"a")
-- > findMax empty                            Error: empty map has no maximal element

findMax :: Map k a -> (k,a)
findMax (Bin _ kx x _ Tip)  = (kx,x)
findMax (Bin _ _  _ _ r)    = findMax r
findMax Tip                 = error "Map.findMax: empty map has no maximal element"

-- | /O(log n)/. Delete the minimal key. Returns an empty map if the map is empty.
--
-- > deleteMin (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(5,"a"), (7,"c")]
-- > deleteMin empty == empty

deleteMin :: Map k a -> Map k a
deleteMin (Bin _ _  _ Tip r)  = r
deleteMin (Bin _ kx x l r)    = balanceR kx x (deleteMin l) r
deleteMin Tip                 = Tip

-- | /O(log n)/. Delete the maximal key. Returns an empty map if the map is empty.
--
-- > deleteMax (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(3,"b"), (5,"a")]
-- > deleteMax empty == empty

deleteMax :: Map k a -> Map k a
deleteMax (Bin _ _  _ l Tip)  = l
deleteMax (Bin _ kx x l r)    = balanceL kx x l (deleteMax r)
deleteMax Tip                 = Tip

-- | /O(log n)/. Update the value at the minimal key.
--
-- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]
-- > updateMin (\ _ -> Nothing)         (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMin :: (a -> Maybe a) -> Map k a -> Map k a
updateMin f m
  = updateMinWithKey (\_ x -> f x) m

-- | /O(log n)/. Update the value at the maximal key.
--
-- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]
-- > updateMax (\ _ -> Nothing)         (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMax :: (a -> Maybe a) -> Map k a -> Map k a
updateMax f m
  = updateMaxWithKey (\_ x -> f x) m


-- | /O(log n)/. Update the value at the minimal key.
--
-- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]
-- > updateMinWithKey (\ _ _ -> Nothing)                     (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey _ Tip                 = Tip
updateMinWithKey f (Bin sx kx x Tip r) = case f kx x of
                                           Nothing -> r
                                           Just x' -> Bin sx kx x' Tip r
updateMinWithKey f (Bin _ kx x l r)    = balanceR kx x (updateMinWithKey f l) r

-- | /O(log n)/. Update the value at the maximal key.
--
-- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]
-- > updateMaxWithKey (\ _ _ -> Nothing)                     (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey _ Tip                 = Tip
updateMaxWithKey f (Bin sx kx x l Tip) = case f kx x of
                                           Nothing -> l
                                           Just x' -> Bin sx kx x' l Tip
updateMaxWithKey f (Bin _ kx x l r)    = balanceL kx x l (updateMaxWithKey f r)

-- | /O(log n)/. Retrieves the minimal (key,value) pair of the map, and
-- the map stripped of that element, or 'Nothing' if passed an empty map.
--
-- > minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a")
-- > minViewWithKey empty == Nothing

minViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
minViewWithKey Tip = Nothing
minViewWithKey x   = Just (deleteFindMin x)

-- | /O(log n)/. Retrieves the maximal (key,value) pair of the map, and
-- the map stripped of that element, or 'Nothing' if passed an empty map.
--
-- > maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b")
-- > maxViewWithKey empty == Nothing

maxViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
maxViewWithKey Tip = Nothing
maxViewWithKey x   = Just (deleteFindMax x)

-- | /O(log n)/. Retrieves the value associated with minimal key of the
-- map, and the map stripped of that element, or 'Nothing' if passed an
-- empty map.
--
-- > minView (fromList [(5,"a"), (3,"b")]) == Just ("b", singleton 5 "a")
-- > minView empty == Nothing

minView :: Map k a -> Maybe (a, Map k a)
minView Tip = Nothing
minView x   = Just (first snd $ deleteFindMin x)

-- | /O(log n)/. Retrieves the value associated with maximal key of the
-- map, and the map stripped of that element, or 'Nothing' if passed an
-- empty map.
--
-- > maxView (fromList [(5,"a"), (3,"b")]) == Just ("a", singleton 3 "b")
-- > maxView empty == Nothing

maxView :: Map k a -> Maybe (a, Map k a)
maxView Tip = Nothing
maxView x   = Just (first snd $ deleteFindMax x)

-- Update the 1st component of a tuple (special case of Control.Arrow.first)
first :: (a -> b) -> (a,c) -> (b,c)
first f (x,y) = (f x, y)

{--------------------------------------------------------------------
  Union.
--------------------------------------------------------------------}
-- | The union of a list of maps:
--   (@'unions' == 'Prelude.foldl' 'union' 'empty'@).
--
-- > unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "b"), (5, "a"), (7, "C")]
-- > unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]
-- >     == fromList [(3, "B3"), (5, "A3"), (7, "C")]

unions :: Ord k => [Map k a] -> Map k a
unions ts
  = foldlStrict union empty ts
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE unions #-}
#endif

-- | The union of a list of maps, with a combining operation:
--   (@'unionsWith' f == 'Prelude.foldl' ('unionWith' f) 'empty'@).
--
-- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

unionsWith :: Ord k => (a->a->a) -> [Map k a] -> Map k a
unionsWith f ts
  = foldlStrict (unionWith f) empty ts
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE unionsWith #-}
#endif

-- | /O(n+m)/.
-- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and @t2@.
-- It prefers @t1@ when duplicate keys are encountered,
-- i.e. (@'union' == 'unionWith' 'const'@).
-- The implementation uses the efficient /hedge-union/ algorithm.
--
-- > union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

union :: Ord k => Map k a -> Map k a -> Map k a
union Tip t2  = t2
union t1 Tip  = t1
union t1 t2 = hedgeUnion NothingS NothingS t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE union #-}
#endif

-- left-biased hedge union
hedgeUnion :: Ord a => MaybeS a -> MaybeS a -> Map a b -> Map a b -> Map a b
hedgeUnion _   _   t1  Tip = t1
hedgeUnion blo bhi Tip (Bin _ kx x l r) = link kx x (filterGt blo l) (filterLt bhi r)
hedgeUnion _   _   t1  (Bin _ kx x Tip Tip) = insertR kx x t1  -- According to benchmarks, this special case increases
                                                              -- performance up to 30%. It does not help in difference or intersection.
hedgeUnion blo bhi (Bin _ kx x l r) t2 = link kx x (hedgeUnion blo bmi l (trim blo bmi t2))
                                                   (hedgeUnion bmi bhi r (trim bmi bhi t2))
  where bmi = JustS kx
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE hedgeUnion #-}
#endif

{--------------------------------------------------------------------
  Union with a combining function
--------------------------------------------------------------------}
-- | /O(n+m)/. Union with a combining function. The implementation uses the efficient /hedge-union/ algorithm.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith f m1 m2
  = unionWithKey (\_ x y -> f x y) m1 m2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE unionWith #-}
#endif

-- | /O(n+m)/.
-- Union with a combining function. The implementation uses the efficient /hedge-union/ algorithm.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
-- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey f t1 t2 = mergeWithKey (\k x1 x2 -> Just $ f k x1 x2) id id t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE unionWithKey #-}
#endif

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference of two maps.
-- Return elements of the first map not existing in the second map.
-- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/.
--
-- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

difference :: Ord k => Map k a -> Map k b -> Map k a
difference Tip _   = Tip
difference t1 Tip  = t1
difference t1 t2   = hedgeDiff NothingS NothingS t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE difference #-}
#endif

hedgeDiff :: Ord a => MaybeS a -> MaybeS a -> Map a b -> Map a c -> Map a b
hedgeDiff _   _   Tip              _ = Tip
hedgeDiff blo bhi (Bin _ kx x l r) Tip = link kx x (filterGt blo l) (filterLt bhi r)
hedgeDiff blo bhi t (Bin _ kx _ l r) = merge (hedgeDiff blo bmi (trim blo bmi t) l)
                                             (hedgeDiff bmi bhi (trim bmi bhi t) r)
  where bmi = JustS kx
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE hedgeDiff #-}
#endif

-- | /O(n+m)/. Difference with a combining function.
-- When two equal keys are
-- encountered, the combining function is applied to the values of these keys.
-- If it returns 'Nothing', the element is discarded (proper set difference). If
-- it returns (@'Just' y@), the element is updated with a new value @y@.
-- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/.
--
-- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing
-- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])
-- >     == singleton 3 "b:B"

differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith f m1 m2
  = differenceWithKey (\_ x y -> f x y) m1 m2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE differenceWith #-}
#endif

-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns 'Nothing', the element is discarded (proper set difference). If
-- it returns (@'Just' y@), the element is updated with a new value @y@.
-- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/.
--
-- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing
-- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])
-- >     == singleton 3 "3:b|B"

differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey f t1 t2 = mergeWithKey f id (const Tip) t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE differenceWithKey #-}
#endif


{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. Intersection of two maps.
-- Return data in the first map for the keys existing in both maps.
-- (@'intersection' m1 m2 == 'intersectionWith' 'const' m1 m2@).
-- The implementation uses an efficient /hedge/ algorithm comparable with
-- /hedge-union/.
--
-- > intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersection :: Ord k => Map k a -> Map k b -> Map k a
intersection Tip _ = Tip
intersection _ Tip = Tip
intersection t1 t2 = hedgeInt NothingS NothingS t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE intersection #-}
#endif

hedgeInt :: Ord k => MaybeS k -> MaybeS k -> Map k a -> Map k b -> Map k a
hedgeInt _ _ _   Tip = Tip
hedgeInt _ _ Tip _   = Tip
hedgeInt blo bhi (Bin _ kx x l r) t2 = let l' = hedgeInt blo bmi l (trim blo bmi t2)
                                           r' = hedgeInt bmi bhi r (trim bmi bhi t2)
                                       in if kx `member` t2 then link kx x l' r' else merge l' r'
  where bmi = JustS kx
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE hedgeInt #-}
#endif

-- | /O(n+m)/. Intersection with a combining function.  The implementation uses
-- an efficient /hedge/ algorithm comparable with /hedge-union/.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith f m1 m2
  = intersectionWithKey (\_ x y -> f x y) m1 m2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE intersectionWith #-}
#endif

-- | /O(n+m)/. Intersection with a combining function.  The implementation uses
-- an efficient /hedge/ algorithm comparable with /hedge-union/.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"


intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey f t1 t2 = mergeWithKey (\k x1 x2 -> Just $ f k x1 x2) (const Tip) (const Tip) t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE intersectionWithKey #-}
#endif


{--------------------------------------------------------------------
  MergeWithKey
--------------------------------------------------------------------}

-- | /O(n+m)/. A high-performance universal combining function. This function
-- is used to define 'unionWith', 'unionWithKey', 'differenceWith',
-- 'differenceWithKey', 'intersectionWith', 'intersectionWithKey' and can be
-- used to define other custom combine functions.
--
-- Please make sure you know what is going on when using 'mergeWithKey',
-- otherwise you can be surprised by unexpected code growth or even
-- corruption of the data structure.
--
-- When 'mergeWithKey' is given three arguments, it is inlined to the call
-- site. You should therefore use 'mergeWithKey' only to define your custom
-- combining functions. For example, you could define 'unionWithKey',
-- 'differenceWithKey' and 'intersectionWithKey' as
--
-- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2
-- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2
-- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
--
-- When calling @'mergeWithKey' combine only1 only2@, a function combining two
-- 'Map's is created, such that
--
-- * if a key is present in both maps, it is passed with both corresponding
--   values to the @combine@ function. Depending on the result, the key is either
--   present in the result with specified value, or is left out;
--
-- * a nonempty subtree present only in the first map is passed to @only1@ and
--   the output is added to the result;
--
-- * a nonempty subtree present only in the second map is passed to @only2@ and
--   the output is added to the result.
--
-- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/.
-- The values can be modified arbitrarily. Most common variants of @only1@ and
-- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or
-- @'filterWithKey' f@ could be used for any @f@.

mergeWithKey :: Ord k => (k -> a -> b -> Maybe c) -> (Map k a -> Map k c) -> (Map k b -> Map k c)
             -> Map k a -> Map k b -> Map k c
mergeWithKey f g1 g2 = go
  where
    go Tip t2 = g2 t2
    go t1 Tip = g1 t1
    go t1 t2 = hedgeMerge NothingS NothingS t1 t2

    hedgeMerge _   _   t1  Tip = g1 t1
    hedgeMerge blo bhi Tip (Bin _ kx x l r) = g2 $ link kx x (filterGt blo l) (filterLt bhi r)
    hedgeMerge blo bhi (Bin _ kx x l r) t2 = let l' = hedgeMerge blo bmi l (trim blo bmi t2)
                                                 (found, trim_t2) = trimLookupLo kx bhi t2
                                                 r' = hedgeMerge bmi bhi r trim_t2
                                             in case found of
                                                  Nothing -> case g1 (singleton kx x) of
                                                               Tip -> merge l' r'
                                                               (Bin _ _ x' Tip Tip) -> link kx x' l' r'
                                                               _ -> error "mergeWithKey: Given function only1 does not fulfil required conditions (see documentation)"
                                                  Just x2 -> case f kx x x2 of
                                                               Nothing -> merge l' r'
                                                               Just x' -> link kx x' l' r'
      where bmi = JustS kx
{-# INLINE mergeWithKey #-}

{--------------------------------------------------------------------
  Submap
--------------------------------------------------------------------}
-- | /O(n+m)/.
-- This function is defined as (@'isSubmapOf' = 'isSubmapOfBy' (==)@).
--
isSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isSubmapOf m1 m2 = isSubmapOfBy (==) m1 m2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE isSubmapOf #-}
#endif

{- | /O(n+m)/.
 The expression (@'isSubmapOfBy' f t1 t2@) returns 'True' if
 all keys in @t1@ are in tree @t2@, and when @f@ returns 'True' when
 applied to their respective values. For example, the following
 expressions are all 'True':

 > isSubmapOfBy (==) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
 > isSubmapOfBy (<=) (fromList [('a',1)]) (fromList [('a',1),('b',2)])
 > isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1),('b',2)])

 But the following are all 'False':

 > isSubmapOfBy (==) (fromList [('a',2)]) (fromList [('a',1),('b',2)])
 > isSubmapOfBy (<)  (fromList [('a',1)]) (fromList [('a',1),('b',2)])
 > isSubmapOfBy (==) (fromList [('a',1),('b',2)]) (fromList [('a',1)])


-}
isSubmapOfBy :: Ord k => (a->b->Bool) -> Map k a -> Map k b -> Bool
isSubmapOfBy f t1 t2
  = (size t1 <= size t2) && (submap' f t1 t2)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE isSubmapOfBy #-}
#endif

submap' :: Ord a => (b -> c -> Bool) -> Map a b -> Map a c -> Bool
submap' _ Tip _ = True
submap' _ _ Tip = False
submap' f (Bin _ kx x l r) t
  = case found of
      Nothing -> False
      Just y  -> f x y && submap' f l lt && submap' f r gt
  where
    (lt,found,gt) = splitLookup kx t
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE submap' #-}
#endif

-- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
-- Defined as (@'isProperSubmapOf' = 'isProperSubmapOfBy' (==)@).
isProperSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOf m1 m2
  = isProperSubmapOfBy (==) m1 m2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE isProperSubmapOf #-}
#endif

{- | /O(n+m)/. Is this a proper submap? (ie. a submap but not equal).
 The expression (@'isProperSubmapOfBy' f m1 m2@) returns 'True' when
 @m1@ and @m2@ are not equal,
 all keys in @m1@ are in @m2@, and when @f@ returns 'True' when
 applied to their respective values. For example, the following
 expressions are all 'True':

  > isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
  > isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

 But the following are all 'False':

  > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
  > isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
  > isProperSubmapOfBy (<)  (fromList [(1,1)])       (fromList [(1,1),(2,2)])


-}
isProperSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOfBy f t1 t2
  = (size t1 < size t2) && (submap' f t1 t2)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE isProperSubmapOfBy #-}
#endif

{--------------------------------------------------------------------
  Filter and partition
--------------------------------------------------------------------}
-- | /O(n)/. Filter all values that satisfy the predicate.
--
-- > filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty
-- > filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty

filter :: (a -> Bool) -> Map k a -> Map k a
filter p m
  = filterWithKey (\_ x -> p x) m

-- | /O(n)/. Filter all keys\/values that satisfy the predicate.
--
-- > filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

filterWithKey :: (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey _ Tip = Tip
filterWithKey p (Bin _ kx x l r)
  | p kx x    = link kx x (filterWithKey p l) (filterWithKey p r)
  | otherwise = merge (filterWithKey p l) (filterWithKey p r)

-- | /O(n)/. Partition the map according to a predicate. The first
-- map contains all elements that satisfy the predicate, the second all
-- elements that fail the predicate. See also 'split'.
--
-- > partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")
-- > partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)
-- > partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

partition :: (a -> Bool) -> Map k a -> (Map k a,Map k a)
partition p m
  = partitionWithKey (\_ x -> p x) m

-- | /O(n)/. Partition the map according to a predicate. The first
-- map contains all elements that satisfy the predicate, the second all
-- elements that fail the predicate. See also 'split'.
--
-- > partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b")
-- > partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)
-- > partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

partitionWithKey :: (k -> a -> Bool) -> Map k a -> (Map k a,Map k a)
partitionWithKey p0 t0 = toPair $ go p0 t0
  where
    go _ Tip = (Tip :*: Tip)
    go p (Bin _ kx x l r)
      | p kx x    = link kx x l1 r1 :*: merge l2 r2
      | otherwise = merge l1 r1 :*: link kx x l2 r2
      where
        (l1 :*: l2) = go p l
        (r1 :*: r2) = go p r

-- | /O(n)/. Map values and collect the 'Just' results.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"

mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b
mapMaybe f = mapMaybeWithKey (\_ x -> f x)

-- | /O(n)/. Map keys\/values and collect the 'Just' results.
--
-- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing
-- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"

mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey _ Tip = Tip
mapMaybeWithKey f (Bin _ kx x l r) = case f kx x of
  Just y  -> link kx y (mapMaybeWithKey f l) (mapMaybeWithKey f r)
  Nothing -> merge (mapMaybeWithKey f l) (mapMaybeWithKey f r)

-- | /O(n)/. Map values and separate the 'Left' and 'Right' results.
--
-- > let f a = if a < "c" then Left a else Right a
-- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])
-- >
-- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEither f m
  = mapEitherWithKey (\_ x -> f x) m

-- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results.
--
-- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)
-- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])
-- >
-- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- >     == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])

mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey f0 t0 = toPair $ go f0 t0
  where
    go _ Tip = (Tip :*: Tip)
    go f (Bin _ kx x l r) = case f kx x of
      Left y  -> link kx y l1 r1 :*: merge l2 r2
      Right z -> merge l1 r1 :*: link kx z l2 r2
     where
        (l1 :*: l2) = go f l
        (r1 :*: r2) = go f r

{--------------------------------------------------------------------
  Mapping
--------------------------------------------------------------------}
-- | /O(n)/. Map a function over all values in the map.
--
-- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]

map :: (a -> b) -> Map k a -> Map k b
map _ Tip = Tip
map f (Bin sx kx x l r) = Bin sx kx (f x) (map f l) (map f r)
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] map #-}
{-# RULES
"map/map" forall f g xs . map f (map g xs) = map (f . g) xs
 #-}
#endif
#if __GLASGOW_HASKELL__ >= 709
-- Safe coercions were introduced in 7.8, but did not work well with RULES yet.
{-# RULES
"map/coerce" map coerce = coerce
 #-}
#endif

-- | /O(n)/. Map a function over all values in the map.
--
-- > let f key x = (show key) ++ ":" ++ x
-- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]

mapWithKey :: (k -> a -> b) -> Map k a -> Map k b
mapWithKey _ Tip = Tip
mapWithKey f (Bin sx kx x l r) = Bin sx kx (f kx x) (mapWithKey f l) (mapWithKey f r)

#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] mapWithKey #-}
{-# RULES
"mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) =
  mapWithKey (\k a -> f k (g k a)) xs
"mapWithKey/map" forall f g xs . mapWithKey f (map g xs) =
  mapWithKey (\k a -> f k (g a)) xs
"map/mapWithKey" forall f g xs . map f (mapWithKey g xs) =
  mapWithKey (\k a -> f (g k a)) xs
 #-}
#endif

-- | /O(n)/.
-- @'traverseWithKey' f m == 'fromList' <$> 'traverse' (\(k, v) -> (,) k <$> f k v) ('toList' m)@
-- That is, behaves exactly like a regular 'traverse' except that the traversing
-- function also has access to the key associated with a value.
--
-- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')])
-- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')])           == Nothing
traverseWithKey :: Applicative t => (k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey f = go
  where
    go Tip = pure Tip
    go (Bin 1 k v _ _) = (\v' -> Bin 1 k v' Tip Tip) <$> f k v
    go (Bin s k v l r) = flip (Bin s k) <$> go l <*> f k v <*> go r
{-# INLINE traverseWithKey #-}

-- | /O(n)/. The function 'mapAccum' threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a b = (a ++ b, b ++ "X")
-- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])

mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccum f a m
  = mapAccumWithKey (\a' _ x' -> f a' x') a m

-- | /O(n)/. The function 'mapAccumWithKey' threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")
-- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])

mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumWithKey f a t
  = mapAccumL f a t

-- | /O(n)/. The function 'mapAccumL' threads an accumulating
-- argument through the map in ascending order of keys.
mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumL _ a Tip               = (a,Tip)
mapAccumL f a (Bin sx kx x l r) =
  let (a1,l') = mapAccumL f a l
      (a2,x') = f a1 kx x
      (a3,r') = mapAccumL f a2 r
  in (a3,Bin sx kx x' l' r')

-- | /O(n)/. The function 'mapAccumR' threads an accumulating
-- argument through the map in descending order of keys.
mapAccumRWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumRWithKey _ a Tip = (a,Tip)
mapAccumRWithKey f a (Bin sx kx x l r) =
  let (a1,r') = mapAccumRWithKey f a r
      (a2,x') = f a1 kx x
      (a3,l') = mapAccumRWithKey f a2 l
  in (a3,Bin sx kx x' l' r')

-- | /O(n*log n)/.
-- @'mapKeys' f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- The size of the result may be smaller if @f@ maps two or more distinct
-- keys to the same new key.  In this case the value at the greatest of the
-- original keys is retained.
--
-- > mapKeys (+ 1) (fromList [(5,"a"), (3,"b")])                        == fromList [(4, "b"), (6, "a")]
-- > mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c"
-- > mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"

mapKeys :: Ord k2 => (k1->k2) -> Map k1 a -> Map k2 a
mapKeys f = fromList . foldrWithKey (\k x xs -> (f k, x) : xs) []
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE mapKeys #-}
#endif

-- | /O(n*log n)/.
-- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- The size of the result may be smaller if @f@ maps two or more distinct
-- keys to the same new key.  In this case the associated values will be
-- combined using @c@.
--
-- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"
-- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"

mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1->k2) -> Map k1 a -> Map k2 a
mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) []
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE mapKeysWith #-}
#endif


-- | /O(n)/.
-- @'mapKeysMonotonic' f s == 'mapKeys' f s@, but works only when @f@
-- is strictly monotonic.
-- That is, for any values @x@ and @y@, if @x@ < @y@ then @f x@ < @f y@.
-- /The precondition is not checked./
-- Semi-formally, we have:
--
-- > and [x < y ==> f x < f y | x <- ls, y <- ls]
-- >                     ==> mapKeysMonotonic f s == mapKeys f s
-- >     where ls = keys s
--
-- This means that @f@ maps distinct original keys to distinct resulting keys.
-- This function has better performance than 'mapKeys'.
--
-- > mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]
-- > valid (mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")])) == True
-- > valid (mapKeysMonotonic (\ _ -> 1)     (fromList [(5,"a"), (3,"b")])) == False

mapKeysMonotonic :: (k1->k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic _ Tip = Tip
mapKeysMonotonic f (Bin sz k x l r) =
    Bin sz (f k) x (mapKeysMonotonic f l) (mapKeysMonotonic f r)

{--------------------------------------------------------------------
  Folds
--------------------------------------------------------------------}

-- | /O(n)/. Fold the values in the map using the given right-associative
-- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'elems'@.
--
-- For example,
--
-- > elems map = foldr (:) [] map
--
-- > let f a len = len + (length a)
-- > foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldr :: (a -> b -> b) -> b -> Map k a -> b
foldr f z = go z
  where
    go z' Tip             = z'
    go z' (Bin _ _ x l r) = go (f x (go z' r)) l
{-# INLINE foldr #-}

-- | /O(n)/. A strict version of 'foldr'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldr' :: (a -> b -> b) -> b -> Map k a -> b
foldr' f z = go z
  where
    STRICT_1_OF_2(go)
    go z' Tip             = z'
    go z' (Bin _ _ x l r) = go (f x (go z' r)) l
{-# INLINE foldr' #-}

-- | /O(n)/. Fold the values in the map using the given left-associative
-- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'elems'@.
--
-- For example,
--
-- > elems = reverse . foldl (flip (:)) []
--
-- > let f len a = len + (length a)
-- > foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldl :: (a -> b -> a) -> a -> Map k b -> a
foldl f z = go z
  where
    go z' Tip             = z'
    go z' (Bin _ _ x l r) = go (f (go z' l) x) r
{-# INLINE foldl #-}

-- | /O(n)/. A strict version of 'foldl'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldl' :: (a -> b -> a) -> a -> Map k b -> a
foldl' f z = go z
  where
    STRICT_1_OF_2(go)
    go z' Tip             = z'
    go z' (Bin _ _ x l r) = go (f (go z' l) x) r
{-# INLINE foldl' #-}

-- | /O(n)/. Fold the keys and values in the map using the given right-associative
-- binary operator, such that
-- @'foldrWithKey' f z == 'Prelude.foldr' ('uncurry' f) z . 'toAscList'@.
--
-- For example,
--
-- > keys map = foldrWithKey (\k x ks -> k:ks) [] map
--
-- > let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"
-- > foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"
foldrWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey f z = go z
  where
    go z' Tip             = z'
    go z' (Bin _ kx x l r) = go (f kx x (go z' r)) l
{-# INLINE foldrWithKey #-}

-- | /O(n)/. A strict version of 'foldrWithKey'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldrWithKey' :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey' f z = go z
  where
    STRICT_1_OF_2(go)
    go z' Tip              = z'
    go z' (Bin _ kx x l r) = go (f kx x (go z' r)) l
{-# INLINE foldrWithKey' #-}

-- | /O(n)/. Fold the keys and values in the map using the given left-associative
-- binary operator, such that
-- @'foldlWithKey' f z == 'Prelude.foldl' (\\z' (kx, x) -> f z' kx x) z . 'toAscList'@.
--
-- For example,
--
-- > keys = reverse . foldlWithKey (\ks k x -> k:ks) []
--
-- > let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"
-- > foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"
foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey f z = go z
  where
    go z' Tip              = z'
    go z' (Bin _ kx x l r) = go (f (go z' l) kx x) r
{-# INLINE foldlWithKey #-}

-- | /O(n)/. A strict version of 'foldlWithKey'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldlWithKey' :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey' f z = go z
  where
    STRICT_1_OF_2(go)
    go z' Tip              = z'
    go z' (Bin _ kx x l r) = go (f (go z' l) kx x) r
{-# INLINE foldlWithKey' #-}

-- | /O(n)/. Fold the keys and values in the map using the given monoid, such that
--
-- @'foldMapWithKey' f = 'Prelude.fold' . 'mapWithKey' f@
--
-- This can be an asymptotically faster than 'foldrWithKey' or 'foldlWithKey' for some monoids.
foldMapWithKey :: Monoid m => (k -> a -> m) -> Map k a -> m
foldMapWithKey f = go
  where
    go Tip             = mempty
    go (Bin 1 k v _ _) = f k v
    go (Bin _ k v l r) = go l `mappend` (f k v `mappend` go r)
{-# INLINE foldMapWithKey #-}

{--------------------------------------------------------------------
  List variations
--------------------------------------------------------------------}
-- | /O(n)/.
-- Return all elements of the map in the ascending order of their keys.
-- Subject to list fusion.
--
-- > elems (fromList [(5,"a"), (3,"b")]) == ["b","a"]
-- > elems empty == []

elems :: Map k a -> [a]
elems = foldr (:) []

-- | /O(n)/. Return all keys of the map in ascending order. Subject to list
-- fusion.
--
-- > keys (fromList [(5,"a"), (3,"b")]) == [3,5]
-- > keys empty == []

keys  :: Map k a -> [k]
keys = foldrWithKey (\k _ ks -> k : ks) []

-- | /O(n)/. An alias for 'toAscList'. Return all key\/value pairs in the map
-- in ascending key order. Subject to list fusion.
--
-- > assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]
-- > assocs empty == []

assocs :: Map k a -> [(k,a)]
assocs m
  = toAscList m

-- | /O(n)/. The set of all keys of the map.
--
-- > keysSet (fromList [(5,"a"), (3,"b")]) == Data.Set.fromList [3,5]
-- > keysSet empty == Data.Set.empty

keysSet :: Map k a -> Set.Set k
keysSet Tip = Set.Tip
keysSet (Bin sz kx _ l r) = Set.Bin sz kx (keysSet l) (keysSet r)

-- | /O(n)/. Build a map from a set of keys and a function which for each key
-- computes its value.
--
-- > fromSet (\k -> replicate k 'a') (Data.Set.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]
-- > fromSet undefined Data.Set.empty == empty

fromSet :: (k -> a) -> Set.Set k -> Map k a
fromSet _ Set.Tip = Tip
fromSet f (Set.Bin sz x l r) = Bin sz x (f x) (fromSet f l) (fromSet f r)

{--------------------------------------------------------------------
  Lists
  use [foldlStrict] to reduce demand on the control-stack
--------------------------------------------------------------------}
#if __GLASGOW_HASKELL__ >= 708
instance (Ord k) => GHCExts.IsList (Map k v) where
  type Item (Map k v) = (k,v)
  fromList = fromList
  toList   = toList
#endif

-- | /O(n*log n)/. Build a map from a list of key\/value pairs. See also 'fromAscList'.
-- If the list contains more than one value for the same key, the last value
-- for the key is retained.
--
-- If the keys of the list are ordered, linear-time implementation is used,
-- with the performance equal to 'fromDistinctAscList'.
--
-- > fromList [] == empty
-- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
-- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

-- For some reason, when 'singleton' is used in fromList or in
-- create, it is not inlined, so we inline it manually.
fromList :: Ord k => [(k,a)] -> Map k a
fromList [] = Tip
fromList [(kx, x)] = Bin 1 kx x Tip Tip
fromList ((kx0, x0) : xs0) | not_ordered kx0 xs0 = fromList' (Bin 1 kx0 x0 Tip Tip) xs0
                           | otherwise = go (1::Int) (Bin 1 kx0 x0 Tip Tip) xs0
  where
    not_ordered _ [] = False
    not_ordered kx ((ky,_) : _) = kx >= ky
    {-# INLINE not_ordered #-}

    fromList' t0 xs = foldlStrict ins t0 xs
      where ins t (k,x) = insert k x t

    STRICT_1_OF_3(go)
    go _ t [] = t
    go _ t [(kx, x)] = insertMax kx x t
    go s l xs@((kx, x) : xss) | not_ordered kx xss = fromList' l xs
                              | otherwise = case create s xss of
                                  (r, ys, []) -> go (s `shiftL` 1) (link kx x l r) ys
                                  (r, _,  ys) -> fromList' (link kx x l r) ys

    -- The create is returning a triple (tree, xs, ys). Both xs and ys
    -- represent not yet processed elements and only one of them can be nonempty.
    -- If ys is nonempty, the keys in ys are not ordered with respect to tree
    -- and must be inserted using fromList'. Otherwise the keys have been
    -- ordered so far.
    STRICT_1_OF_2(create)
    create _ [] = (Tip, [], [])
    create s xs@(xp : xss)
      | s == 1 = case xp of (kx, x) | not_ordered kx xss -> (Bin 1 kx x Tip Tip, [], xss)
                                    | otherwise -> (Bin 1 kx x Tip Tip, xss, [])
      | otherwise = case create (s `shiftR` 1) xs of
                      res@(_, [], _) -> res
                      (l, [(ky, y)], zs) -> (insertMax ky y l, [], zs)
                      (l, ys@((ky, y):yss), _) | not_ordered ky yss -> (l, [], ys)
                                               | otherwise -> case create (s `shiftR` 1) yss of
                                                   (r, zs, ws) -> (link ky y l r, zs, ws)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromList #-}
#endif

-- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'.
--
-- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]
-- > fromListWith (++) [] == empty

fromListWith :: Ord k => (a -> a -> a) -> [(k,a)] -> Map k a
fromListWith f xs
  = fromListWithKey (\_ x y -> f x y) xs
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromListWith #-}
#endif

-- | /O(n*log n)/. Build a map from a list of key\/value pairs with a combining function. See also 'fromAscListWithKey'.
--
-- > let f k a1 a2 = (show k) ++ a1 ++ a2
-- > fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "3ab"), (5, "5a5ba")]
-- > fromListWithKey f [] == empty

fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromListWithKey f xs
  = foldlStrict ins empty xs
  where
    ins t (k,x) = insertWithKey f k x t
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromListWithKey #-}
#endif

-- | /O(n)/. Convert the map to a list of key\/value pairs. Subject to list fusion.
--
-- > toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]
-- > toList empty == []

toList :: Map k a -> [(k,a)]
toList = toAscList

-- | /O(n)/. Convert the map to a list of key\/value pairs where the keys are
-- in ascending order. Subject to list fusion.
--
-- > toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toAscList :: Map k a -> [(k,a)]
toAscList = foldrWithKey (\k x xs -> (k,x):xs) []

-- | /O(n)/. Convert the map to a list of key\/value pairs where the keys
-- are in descending order. Subject to list fusion.
--
-- > toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]

toDescList :: Map k a -> [(k,a)]
toDescList = foldlWithKey (\xs k x -> (k,x):xs) []

-- List fusion for the list generating functions.
#if __GLASGOW_HASKELL__
-- The foldrFB and foldlFB are fold{r,l}WithKey equivalents, used for list fusion.
-- They are important to convert unfused methods back, see mapFB in prelude.
foldrFB :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrFB = foldrWithKey
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlFB = foldlWithKey
{-# INLINE[0] foldlFB #-}

-- Inline assocs and toList, so that we need to fuse only toAscList.
{-# INLINE assocs #-}
{-# INLINE toList #-}

-- The fusion is enabled up to phase 2 included. If it does not succeed,
-- convert in phase 1 the expanded elems,keys,to{Asc,Desc}List calls back to
-- elems,keys,to{Asc,Desc}List.  In phase 0, we inline fold{lr}FB (which were
-- used in a list fusion, otherwise it would go away in phase 1), and let compiler
-- do whatever it wants with elems,keys,to{Asc,Desc}List -- it was forbidden to
-- inline it before phase 0, otherwise the fusion rules would not fire at all.
{-# NOINLINE[0] elems #-}
{-# NOINLINE[0] keys #-}
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "Map.elems" [~1] forall m . elems m = build (\c n -> foldrFB (\_ x xs -> c x xs) n m) #-}
{-# RULES "Map.elemsBack" [1] foldrFB (\_ x xs -> x : xs) [] = elems #-}
{-# RULES "Map.keys" [~1] forall m . keys m = build (\c n -> foldrFB (\k _ xs -> c k xs) n m) #-}
{-# RULES "Map.keysBack" [1] foldrFB (\k _ xs -> k : xs) [] = keys #-}
{-# RULES "Map.toAscList" [~1] forall m . toAscList m = build (\c n -> foldrFB (\k x xs -> c (k,x) xs) n m) #-}
{-# RULES "Map.toAscListBack" [1] foldrFB (\k x xs -> (k, x) : xs) [] = toAscList #-}
{-# RULES "Map.toDescList" [~1] forall m . toDescList m = build (\c n -> foldlFB (\xs k x -> c (k,x) xs) n m) #-}
{-# RULES "Map.toDescListBack" [1] foldlFB (\xs k x -> (k, x) : xs) [] = toDescList #-}
#endif

{--------------------------------------------------------------------
  Building trees from ascending/descending lists can be done in linear time.

  Note that if [xs] is ascending that:
    fromAscList xs       == fromList xs
    fromAscListWith f xs == fromListWith f xs
--------------------------------------------------------------------}
-- | /O(n)/. Build a map from an ascending list in linear time.
-- /The precondition (input list is ascending) is not checked./
--
-- > fromAscList [(3,"b"), (5,"a")]          == fromList [(3, "b"), (5, "a")]
-- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]
-- > valid (fromAscList [(3,"b"), (5,"a"), (5,"b")]) == True
-- > valid (fromAscList [(5,"a"), (3,"b"), (5,"b")]) == False

fromAscList :: Eq k => [(k,a)] -> Map k a
fromAscList xs
  = fromAscListWithKey (\_ x _ -> x) xs
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromAscList #-}
#endif

-- | /O(n)/. Build a map from an ascending list in linear time with a combining function for equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]
-- > valid (fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")]) == True
-- > valid (fromAscListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False

fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWith f xs
  = fromAscListWithKey (\_ x y -> f x y) xs
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromAscListWith #-}
#endif

-- | /O(n)/. Build a map from an ascending list in linear time with a
-- combining function for equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2
-- > fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")] == fromList [(3, "b"), (5, "5:b5:ba")]
-- > valid (fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")]) == True
-- > valid (fromAscListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False

fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWithKey f xs
  = fromDistinctAscList (combineEq f xs)
  where
  -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs]
  combineEq _ xs'
    = case xs' of
        []     -> []
        [x]    -> [x]
        (x:xx) -> combineEq' x xx

  combineEq' z [] = [z]
  combineEq' z@(kz,zz) (x@(kx,xx):xs')
    | kx==kz    = let yy = f kx xx zz in combineEq' (kx,yy) xs'
    | otherwise = z:combineEq' x xs'
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromAscListWithKey #-}
#endif


-- | /O(n)/. Build a map from an ascending list of distinct elements in linear time.
-- /The precondition is not checked./
--
-- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]
-- > valid (fromDistinctAscList [(3,"b"), (5,"a")])          == True
-- > valid (fromDistinctAscList [(3,"b"), (5,"a"), (5,"b")]) == False

-- For some reason, when 'singleton' is used in fromDistinctAscList or in
-- create, it is not inlined, so we inline it manually.
fromDistinctAscList :: [(k,a)] -> Map k a
fromDistinctAscList [] = Tip
fromDistinctAscList ((kx0, x0) : xs0) = go (1::Int) (Bin 1 kx0 x0 Tip Tip) xs0
  where
    STRICT_1_OF_3(go)
    go _ t [] = t
    go s l ((kx, x) : xs) = case create s xs of
                              (r, ys) -> go (s `shiftL` 1) (link kx x l r) ys

    STRICT_1_OF_2(create)
    create _ [] = (Tip, [])
    create s xs@(x' : xs')
      | s == 1 = case x' of (kx, x) -> (Bin 1 kx x Tip Tip, xs')
      | otherwise = case create (s `shiftR` 1) xs of
                      res@(_, []) -> res
                      (l, (ky, y):ys) -> case create (s `shiftR` 1) ys of
                        (r, zs) -> (link ky y l r, zs)


{--------------------------------------------------------------------
  Utility functions that return sub-ranges of the original
  tree. Some functions take a `Maybe value` as an argument to
  allow comparisons against infinite values. These are called `blow`
  (Nothing is -\infty) and `bhigh` (here Nothing is +\infty).
  We use MaybeS value, which is a Maybe strict in the Just case.

  [trim blow bhigh t]   A tree that is either empty or where [x > blow]
                        and [x < bhigh] for the value [x] of the root.
  [filterGt blow t]     A tree where for all values [k]. [k > blow]
  [filterLt bhigh t]    A tree where for all values [k]. [k < bhigh]

  [split k t]           Returns two trees [l] and [r] where all keys
                        in [l] are <[k] and all keys in [r] are >[k].
  [splitLookup k t]     Just like [split] but also returns whether [k]
                        was found in the tree.
--------------------------------------------------------------------}

data MaybeS a = NothingS | JustS !a

{--------------------------------------------------------------------
  [trim blo bhi t] trims away all subtrees that surely contain no
  values between the range [blo] to [bhi]. The returned tree is either
  empty or the key of the root is between @blo@ and @bhi@.
--------------------------------------------------------------------}
trim :: Ord k => MaybeS k -> MaybeS k -> Map k a -> Map k a
trim NothingS   NothingS   t = t
trim (JustS lk) NothingS   t = greater lk t where greater lo (Bin _ k _ _ r) | k <= lo = greater lo r
                                                  greater _  t' = t'
trim NothingS   (JustS hk) t = lesser hk t  where lesser  hi (Bin _ k _ l _) | k >= hi = lesser  hi l
                                                  lesser  _  t' = t'
trim (JustS lk) (JustS hk) t = middle lk hk t  where middle lo hi (Bin _ k _ _ r) | k <= lo = middle lo hi r
                                                     middle lo hi (Bin _ k _ l _) | k >= hi = middle lo hi l
                                                     middle _  _  t' = t'
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE trim #-}
#endif

-- Helper function for 'mergeWithKey'. The @'trimLookupLo' lk hk t@ performs both
-- @'trim' (JustS lk) hk t@ and @'lookup' lk t@.

-- See Note: Type of local 'go' function
trimLookupLo :: Ord k => k -> MaybeS k -> Map k a -> (Maybe a, Map k a)
trimLookupLo lk0 mhk0 t0 = toPair $ go lk0 mhk0 t0
  where
    go lk NothingS t = greater lk t
      where greater :: Ord k => k -> Map k a -> StrictPair (Maybe a) (Map k a)
            greater lo t'@(Bin _ kx x l r) = case compare lo kx of
                LT -> lookup lo l :*: t'
                EQ -> (Just x :*: r)
                GT -> greater lo r
            greater _ Tip = (Nothing :*: Tip)
    go lk (JustS hk) t = middle lk hk t
      where middle :: Ord k => k -> k -> Map k a -> StrictPair (Maybe a) (Map k a)
            middle lo hi t'@(Bin _ kx x l r) = case compare lo kx of
                LT | kx < hi -> lookup lo l :*: t'
                   | otherwise -> middle lo hi l
                EQ -> Just x :*: lesser hi r
                GT -> middle lo hi r
            middle _ _ Tip = (Nothing :*: Tip)

            lesser :: Ord k => k -> Map k a -> Map k a
            lesser hi (Bin _ k _ l _) | k >= hi = lesser hi l
            lesser _ t' = t'
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE trimLookupLo #-}
#endif


{--------------------------------------------------------------------
  [filterGt b t] filter all keys >[b] from tree [t]
  [filterLt b t] filter all keys <[b] from tree [t]
--------------------------------------------------------------------}
filterGt :: Ord k => MaybeS k -> Map k v -> Map k v
filterGt NothingS t = t
filterGt (JustS b) t = filter' b t
  where filter' _   Tip = Tip
        filter' b' (Bin _ kx x l r) =
          case compare b' kx of LT -> link kx x (filter' b' l) r
                                EQ -> r
                                GT -> filter' b' r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE filterGt #-}
#endif

filterLt :: Ord k => MaybeS k -> Map k v -> Map k v
filterLt NothingS t = t
filterLt (JustS b) t = filter' b t
  where filter' _   Tip = Tip
        filter' b' (Bin _ kx x l r) =
          case compare kx b' of LT -> link kx x l (filter' b' r)
                                EQ -> l
                                GT -> filter' b' l
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE filterLt #-}
#endif

{--------------------------------------------------------------------
  Split
--------------------------------------------------------------------}
-- | /O(log n)/. The expression (@'split' k map@) is a pair @(map1,map2)@ where
-- the keys in @map1@ are smaller than @k@ and the keys in @map2@ larger than @k@.
-- Any key equal to @k@ is found in neither @map1@ nor @map2@.
--
-- > split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")])
-- > split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a")
-- > split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")
-- > split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty)
-- > split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)

split :: Ord k => k -> Map k a -> (Map k a,Map k a)
split k0 t0 = k0 `seq` toPair $ go k0 t0
  where
    go k t =
      case t of
        Tip            -> (Tip :*: Tip)
        Bin _ kx x l r -> case compare k kx of
          LT -> let (lt :*: gt) = go k l in lt :*: link kx x gt r
          GT -> let (lt :*: gt) = go k r in link kx x l lt :*: gt
          EQ -> (l :*: r)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE split #-}
#endif

-- | /O(log n)/. The expression (@'splitLookup' k map@) splits a map just
-- like 'split' but also returns @'lookup' k map@.
--
-- > splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")])
-- > splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a")
-- > splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a")
-- > splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty)
-- > splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)

splitLookup :: Ord k => k -> Map k a -> (Map k a,Maybe a,Map k a)
splitLookup k t = k `seq`
  case t of
    Tip            -> (Tip,Nothing,Tip)
    Bin _ kx x l r -> case compare k kx of
      LT -> let (lt,z,gt) = splitLookup k l
                gt' = link kx x gt r
            in gt' `seq` (lt,z,gt')
      GT -> let (lt,z,gt) = splitLookup k r
                lt' = link kx x l lt
            in lt' `seq` (lt',z,gt)
      EQ -> (l,Just x,r)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE splitLookup #-}
#endif

{--------------------------------------------------------------------
  Utility functions that maintain the balance properties of the tree.
  All constructors assume that all values in [l] < [k] and all values
  in [r] > [k], and that [l] and [r] are valid trees.

  In order of sophistication:
    [Bin sz k x l r]  The type constructor.
    [bin k x l r]     Maintains the correct size, assumes that both [l]
                      and [r] are balanced with respect to each other.
    [balance k x l r] Restores the balance and size.
                      Assumes that the original tree was balanced and
                      that [l] or [r] has changed by at most one element.
    [link k x l r]    Restores balance and size.

  Furthermore, we can construct a new tree from two trees. Both operations
  assume that all values in [l] < all values in [r] and that [l] and [r]
  are valid:
    [glue l r]        Glues [l] and [r] together. Assumes that [l] and
                      [r] are already balanced with respect to each other.
    [merge l r]       Merges two trees and restores balance.

  Note: in contrast to Adam's paper, we use (<=) comparisons instead
  of (<) comparisons in [link], [merge] and [balance].
  Quickcheck (on [difference]) showed that this was necessary in order
  to maintain the invariants. It is quite unsatisfactory that I haven't
  been able to find out why this is actually the case! Fortunately, it
  doesn't hurt to be a bit more conservative.
--------------------------------------------------------------------}

{--------------------------------------------------------------------
  Link
--------------------------------------------------------------------}
link :: k -> a -> Map k a -> Map k a -> Map k a
link kx x Tip r  = insertMin kx x r
link kx x l Tip  = insertMax kx x l
link kx x l@(Bin sizeL ky y ly ry) r@(Bin sizeR kz z lz rz)
  | delta*sizeL < sizeR  = balanceL kz z (link kx x l lz) rz
  | delta*sizeR < sizeL  = balanceR ky y ly (link kx x ry r)
  | otherwise            = bin kx x l r


-- insertMin and insertMax don't perform potentially expensive comparisons.
insertMax,insertMin :: k -> a -> Map k a -> Map k a
insertMax kx x t
  = case t of
      Tip -> singleton kx x
      Bin _ ky y l r
          -> balanceR ky y l (insertMax kx x r)

insertMin kx x t
  = case t of
      Tip -> singleton kx x
      Bin _ ky y l r
          -> balanceL ky y (insertMin kx x l) r

{--------------------------------------------------------------------
  [merge l r]: merges two trees.
--------------------------------------------------------------------}
merge :: Map k a -> Map k a -> Map k a
merge Tip r   = r
merge l Tip   = l
merge l@(Bin sizeL kx x lx rx) r@(Bin sizeR ky y ly ry)
  | delta*sizeL < sizeR = balanceL ky y (merge l ly) ry
  | delta*sizeR < sizeL = balanceR kx x lx (merge rx r)
  | otherwise           = glue l r

{--------------------------------------------------------------------
  [glue l r]: glues two trees together.
  Assumes that [l] and [r] are already balanced with respect to each other.
--------------------------------------------------------------------}
glue :: Map k a -> Map k a -> Map k a
glue Tip r = r
glue l Tip = l
glue l r
  | size l > size r = let ((km,m),l') = deleteFindMax l in balanceR km m l' r
  | otherwise       = let ((km,m),r') = deleteFindMin r in balanceL km m l r'


-- | /O(log n)/. Delete and find the minimal element.
--
-- > deleteFindMin (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((3,"b"), fromList[(5,"a"), (10,"c")])
-- > deleteFindMin                                            Error: can not return the minimal element of an empty map

deleteFindMin :: Map k a -> ((k,a),Map k a)
deleteFindMin t
  = case t of
      Bin _ k x Tip r -> ((k,x),r)
      Bin _ k x l r   -> let (km,l') = deleteFindMin l in (km,balanceR k x l' r)
      Tip             -> (error "Map.deleteFindMin: can not return the minimal element of an empty map", Tip)

-- | /O(log n)/. Delete and find the maximal element.
--
-- > deleteFindMax (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((10,"c"), fromList [(3,"b"), (5,"a")])
-- > deleteFindMax empty                                      Error: can not return the maximal element of an empty map

deleteFindMax :: Map k a -> ((k,a),Map k a)
deleteFindMax t
  = case t of
      Bin _ k x l Tip -> ((k,x),l)
      Bin _ k x l r   -> let (km,r') = deleteFindMax r in (km,balanceL k x l r')
      Tip             -> (error "Map.deleteFindMax: can not return the maximal element of an empty map", Tip)


{--------------------------------------------------------------------
  [balance l x r] balances two trees with value x.
  The sizes of the trees should balance after decreasing the
  size of one of them. (a rotation).

  [delta] is the maximal relative difference between the sizes of
          two trees, it corresponds with the [w] in Adams' paper.
  [ratio] is the ratio between an outer and inner sibling of the
          heavier subtree in an unbalanced setting. It determines
          whether a double or single rotation should be performed
          to restore balance. It is corresponds with the inverse
          of $\alpha$ in Adam's article.

  Note that according to the Adam's paper:
  - [delta] should be larger than 4.646 with a [ratio] of 2.
  - [delta] should be larger than 3.745 with a [ratio] of 1.534.

  But the Adam's paper is erroneous:
  - It can be proved that for delta=2 and delta>=5 there does
    not exist any ratio that would work.
  - Delta=4.5 and ratio=2 does not work.

  That leaves two reasonable variants, delta=3 and delta=4,
  both with ratio=2.

  - A lower [delta] leads to a more 'perfectly' balanced tree.
  - A higher [delta] performs less rebalancing.

  In the benchmarks, delta=3 is faster on insert operations,
  and delta=4 has slightly better deletes. As the insert speedup
  is larger, we currently use delta=3.

--------------------------------------------------------------------}
delta,ratio :: Int
delta = 3
ratio = 2

-- The balance function is equivalent to the following:
--
--   balance :: k -> a -> Map k a -> Map k a -> Map k a
--   balance k x l r
--     | sizeL + sizeR <= 1    = Bin sizeX k x l r
--     | sizeR > delta*sizeL   = rotateL k x l r
--     | sizeL > delta*sizeR   = rotateR k x l r
--     | otherwise             = Bin sizeX k x l r
--     where
--       sizeL = size l
--       sizeR = size r
--       sizeX = sizeL + sizeR + 1
--
--   rotateL :: a -> b -> Map a b -> Map a b -> Map a b
--   rotateL k x l r@(Bin _ _ _ ly ry) | size ly < ratio*size ry = singleL k x l r
--                                     | otherwise               = doubleL k x l r
--
--   rotateR :: a -> b -> Map a b -> Map a b -> Map a b
--   rotateR k x l@(Bin _ _ _ ly ry) r | size ry < ratio*size ly = singleR k x l r
--                                     | otherwise               = doubleR k x l r
--
--   singleL, singleR :: a -> b -> Map a b -> Map a b -> Map a b
--   singleL k1 x1 t1 (Bin _ k2 x2 t2 t3)  = bin k2 x2 (bin k1 x1 t1 t2) t3
--   singleR k1 x1 (Bin _ k2 x2 t1 t2) t3  = bin k2 x2 t1 (bin k1 x1 t2 t3)
--
--   doubleL, doubleR :: a -> b -> Map a b -> Map a b -> Map a b
--   doubleL k1 x1 t1 (Bin _ k2 x2 (Bin _ k3 x3 t2 t3) t4) = bin k3 x3 (bin k1 x1 t1 t2) (bin k2 x2 t3 t4)
--   doubleR k1 x1 (Bin _ k2 x2 t1 (Bin _ k3 x3 t2 t3)) t4 = bin k3 x3 (bin k2 x2 t1 t2) (bin k1 x1 t3 t4)
--
-- It is only written in such a way that every node is pattern-matched only once.

balance :: k -> a -> Map k a -> Map k a -> Map k a
balance k x l r = case l of
  Tip -> case r of
           Tip -> Bin 1 k x Tip Tip
           (Bin _ _ _ Tip Tip) -> Bin 2 k x Tip r
           (Bin _ rk rx Tip rr@(Bin _ _ _ _ _)) -> Bin 3 rk rx (Bin 1 k x Tip Tip) rr
           (Bin _ rk rx (Bin _ rlk rlx _ _) Tip) -> Bin 3 rlk rlx (Bin 1 k x Tip Tip) (Bin 1 rk rx Tip Tip)
           (Bin rs rk rx rl@(Bin rls rlk rlx rll rlr) rr@(Bin rrs _ _ _ _))
             | rls < ratio*rrs -> Bin (1+rs) rk rx (Bin (1+rls) k x Tip rl) rr
             | otherwise -> Bin (1+rs) rlk rlx (Bin (1+size rll) k x Tip rll) (Bin (1+rrs+size rlr) rk rx rlr rr)

  (Bin ls lk lx ll lr) -> case r of
           Tip -> case (ll, lr) of
                    (Tip, Tip) -> Bin 2 k x l Tip
                    (Tip, (Bin _ lrk lrx _ _)) -> Bin 3 lrk lrx (Bin 1 lk lx Tip Tip) (Bin 1 k x Tip Tip)
                    ((Bin _ _ _ _ _), Tip) -> Bin 3 lk lx ll (Bin 1 k x Tip Tip)
                    ((Bin lls _ _ _ _), (Bin lrs lrk lrx lrl lrr))
                      | lrs < ratio*lls -> Bin (1+ls) lk lx ll (Bin (1+lrs) k x lr Tip)
                      | otherwise -> Bin (1+ls) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+size lrr) k x lrr Tip)
           (Bin rs rk rx rl rr)
              | rs > delta*ls  -> case (rl, rr) of
                   (Bin rls rlk rlx rll rlr, Bin rrs _ _ _ _)
                     | rls < ratio*rrs -> Bin (1+ls+rs) rk rx (Bin (1+ls+rls) k x l rl) rr
                     | otherwise -> Bin (1+ls+rs) rlk rlx (Bin (1+ls+size rll) k x l rll) (Bin (1+rrs+size rlr) rk rx rlr rr)
                   (_, _) -> error "Failure in Data.Map.balance"
              | ls > delta*rs  -> case (ll, lr) of
                   (Bin lls _ _ _ _, Bin lrs lrk lrx lrl lrr)
                     | lrs < ratio*lls -> Bin (1+ls+rs) lk lx ll (Bin (1+rs+lrs) k x lr r)
                     | otherwise -> Bin (1+ls+rs) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+rs+size lrr) k x lrr r)
                   (_, _) -> error "Failure in Data.Map.balance"
              | otherwise -> Bin (1+ls+rs) k x l r
{-# NOINLINE balance #-}

-- Functions balanceL and balanceR are specialised versions of balance.
-- balanceL only checks whether the left subtree is too big,
-- balanceR only checks whether the right subtree is too big.

-- balanceL is called when left subtree might have been inserted to or when
-- right subtree might have been deleted from.
balanceL :: k -> a -> Map k a -> Map k a -> Map k a
balanceL k x l r = case r of
  Tip -> case l of
           Tip -> Bin 1 k x Tip Tip
           (Bin _ _ _ Tip Tip) -> Bin 2 k x l Tip
           (Bin _ lk lx Tip (Bin _ lrk lrx _ _)) -> Bin 3 lrk lrx (Bin 1 lk lx Tip Tip) (Bin 1 k x Tip Tip)
           (Bin _ lk lx ll@(Bin _ _ _ _ _) Tip) -> Bin 3 lk lx ll (Bin 1 k x Tip Tip)
           (Bin ls lk lx ll@(Bin lls _ _ _ _) lr@(Bin lrs lrk lrx lrl lrr))
             | lrs < ratio*lls -> Bin (1+ls) lk lx ll (Bin (1+lrs) k x lr Tip)
             | otherwise -> Bin (1+ls) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+size lrr) k x lrr Tip)

  (Bin rs _ _ _ _) -> case l of
           Tip -> Bin (1+rs) k x Tip r

           (Bin ls lk lx ll lr)
              | ls > delta*rs  -> case (ll, lr) of
                   (Bin lls _ _ _ _, Bin lrs lrk lrx lrl lrr)
                     | lrs < ratio*lls -> Bin (1+ls+rs) lk lx ll (Bin (1+rs+lrs) k x lr r)
                     | otherwise -> Bin (1+ls+rs) lrk lrx (Bin (1+lls+size lrl) lk lx ll lrl) (Bin (1+rs+size lrr) k x lrr r)
                   (_, _) -> error "Failure in Data.Map.balanceL"
              | otherwise -> Bin (1+ls+rs) k x l r
{-# NOINLINE balanceL #-}

-- balanceR is called when right subtree might have been inserted to or when
-- left subtree might have been deleted from.
balanceR :: k -> a -> Map k a -> Map k a -> Map k a
balanceR k x l r = case l of
  Tip -> case r of
           Tip -> Bin 1 k x Tip Tip
           (Bin _ _ _ Tip Tip) -> Bin 2 k x Tip r
           (Bin _ rk rx Tip rr@(Bin _ _ _ _ _)) -> Bin 3 rk rx (Bin 1 k x Tip Tip) rr
           (Bin _ rk rx (Bin _ rlk rlx _ _) Tip) -> Bin 3 rlk rlx (Bin 1 k x Tip Tip) (Bin 1 rk rx Tip Tip)
           (Bin rs rk rx rl@(Bin rls rlk rlx rll rlr) rr@(Bin rrs _ _ _ _))
             | rls < ratio*rrs -> Bin (1+rs) rk rx (Bin (1+rls) k x Tip rl) rr
             | otherwise -> Bin (1+rs) rlk rlx (Bin (1+size rll) k x Tip rll) (Bin (1+rrs+size rlr) rk rx rlr rr)

  (Bin ls _ _ _ _) -> case r of
           Tip -> Bin (1+ls) k x l Tip

           (Bin rs rk rx rl rr)
              | rs > delta*ls  -> case (rl, rr) of
                   (Bin rls rlk rlx rll rlr, Bin rrs _ _ _ _)
                     | rls < ratio*rrs -> Bin (1+ls+rs) rk rx (Bin (1+ls+rls) k x l rl) rr
                     | otherwise -> Bin (1+ls+rs) rlk rlx (Bin (1+ls+size rll) k x l rll) (Bin (1+rrs+size rlr) rk rx rlr rr)
                   (_, _) -> error "Failure in Data.Map.balanceR"
              | otherwise -> Bin (1+ls+rs) k x l r
{-# NOINLINE balanceR #-}


{--------------------------------------------------------------------
  The bin constructor maintains the size of the tree
--------------------------------------------------------------------}
bin :: k -> a -> Map k a -> Map k a -> Map k a
bin k x l r
  = Bin (size l + size r + 1) k x l r
{-# INLINE bin #-}


{--------------------------------------------------------------------
  Eq converts the tree to a list. In a lazy setting, this
  actually seems one of the faster methods to compare two trees
  and it is certainly the simplest :-)
--------------------------------------------------------------------}
instance (Eq k,Eq a) => Eq (Map k a) where
  t1 == t2  = (size t1 == size t2) && (toAscList t1 == toAscList t2)

{--------------------------------------------------------------------
  Ord
--------------------------------------------------------------------}

instance (Ord k, Ord v) => Ord (Map k v) where
    compare m1 m2 = compare (toAscList m1) (toAscList m2)

{--------------------------------------------------------------------
  Functor
--------------------------------------------------------------------}
instance Functor (Map k) where
  fmap f m  = map f m

instance Traversable (Map k) where
  traverse f = traverseWithKey (\_ -> f)
  {-# INLINE traverse #-}

instance Foldable.Foldable (Map k) where
  fold = go
    where go Tip = mempty
          go (Bin 1 _ v _ _) = v
          go (Bin _ _ v l r) = go l `mappend` (v `mappend` go r)
  {-# INLINABLE fold #-}
  foldr = foldr
  {-# INLINE foldr #-}
  foldl = foldl
  {-# INLINE foldl #-}
  foldMap f t = go t
    where go Tip = mempty
          go (Bin 1 _ v _ _) = f v
          go (Bin _ _ v l r) = go l `mappend` (f v `mappend` go r)
  {-# INLINE foldMap #-}

#if MIN_VERSION_base(4,6,0)
  foldl' = foldl'
  {-# INLINE foldl' #-}
  foldr' = foldr'
  {-# INLINE foldr' #-}
#endif
#if MIN_VERSION_base(4,8,0)
  length = size
  {-# INLINE length #-}
  null   = null
  {-# INLINE null #-}
  toList = elems -- NB: Foldable.toList /= Map.toList
  {-# INLINE toList #-}
  elem = go
    where STRICT_1_OF_2(go)
          go _ Tip = False
          go x (Bin _ _ v l r) = x == v || go x l || go x r
  {-# INLINABLE elem #-}
  maximum = start
    where start Tip = error "Map.Foldable.maximum: called with empty map"
          start (Bin _ _ v l r) = go (go v l) r

          STRICT_1_OF_2(go)
          go m Tip = m
          go m (Bin _ _ v l r) = go (go (max m v) l) r
  {-# INLINABLE maximum #-}
  minimum = start
    where start Tip = error "Map.Foldable.minumum: called with empty map"
          start (Bin _ _ v l r) = go (go v l) r

          STRICT_1_OF_2(go)
          go m Tip = m
          go m (Bin _ _ v l r) = go (go (min m v) l) r
  {-# INLINABLE minimum #-}
  sum = foldl' (+) 0
  {-# INLINABLE sum #-}
  product = foldl' (*) 1
  {-# INLINABLE product #-}
#endif

instance (NFData k, NFData a) => NFData (Map k a) where
    rnf Tip = ()
    rnf (Bin _ kx x l r) = rnf kx `seq` rnf x `seq` rnf l `seq` rnf r

{--------------------------------------------------------------------
  Read
--------------------------------------------------------------------}
instance (Ord k, Read k, Read e) => Read (Map k e) where
#ifdef __GLASGOW_HASKELL__
  readPrec = parens $ prec 10 $ do
    Ident "fromList" <- lexP
    xs <- readPrec
    return (fromList xs)

  readListPrec = readListPrecDefault
#else
  readsPrec p = readParen (p > 10) $ \ r -> do
    ("fromList",s) <- lex r
    (xs,t) <- reads s
    return (fromList xs,t)
#endif

{--------------------------------------------------------------------
  Show
--------------------------------------------------------------------}
instance (Show k, Show a) => Show (Map k a) where
  showsPrec d m  = showParen (d > 10) $
    showString "fromList " . shows (toList m)

-- | /O(n)/. Show the tree that implements the map. The tree is shown
-- in a compressed, hanging format. See 'showTreeWith'.
showTree :: (Show k,Show a) => Map k a -> String
showTree m
  = showTreeWith showElem True False m
  where
    showElem k x  = show k ++ ":=" ++ show x


{- | /O(n)/. The expression (@'showTreeWith' showelem hang wide map@) shows
 the tree that implements the map. Elements are shown using the @showElem@ function. If @hang@ is
 'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If
 @wide@ is 'True', an extra wide version is shown.

>  Map> let t = fromDistinctAscList [(x,()) | x <- [1..5]]
>  Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True False t
>  (4,())
>  +--(2,())
>  |  +--(1,())
>  |  +--(3,())
>  +--(5,())
>
>  Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True True t
>  (4,())
>  |
>  +--(2,())
>  |  |
>  |  +--(1,())
>  |  |
>  |  +--(3,())
>  |
>  +--(5,())
>
>  Map> putStrLn $ showTreeWith (\k x -> show (k,x)) False True t
>  +--(5,())
>  |
>  (4,())
>  |
>  |  +--(3,())
>  |  |
>  +--(2,())
>     |
>     +--(1,())

-}
showTreeWith :: (k -> a -> String) -> Bool -> Bool -> Map k a -> String
showTreeWith showelem hang wide t
  | hang      = (showsTreeHang showelem wide [] t) ""
  | otherwise = (showsTree showelem wide [] [] t) ""

showsTree :: (k -> a -> String) -> Bool -> [String] -> [String] -> Map k a -> ShowS
showsTree showelem wide lbars rbars t
  = case t of
      Tip -> showsBars lbars . showString "|\n"
      Bin _ kx x Tip Tip
          -> showsBars lbars . showString (showelem kx x) . showString "\n"
      Bin _ kx x l r
          -> showsTree showelem wide (withBar rbars) (withEmpty rbars) r .
             showWide wide rbars .
             showsBars lbars . showString (showelem kx x) . showString "\n" .
             showWide wide lbars .
             showsTree showelem wide (withEmpty lbars) (withBar lbars) l

showsTreeHang :: (k -> a -> String) -> Bool -> [String] -> Map k a -> ShowS
showsTreeHang showelem wide bars t
  = case t of
      Tip -> showsBars bars . showString "|\n"
      Bin _ kx x Tip Tip
          -> showsBars bars . showString (showelem kx x) . showString "\n"
      Bin _ kx x l r
          -> showsBars bars . showString (showelem kx x) . showString "\n" .
             showWide wide bars .
             showsTreeHang showelem wide (withBar bars) l .
             showWide wide bars .
             showsTreeHang showelem wide (withEmpty bars) r

showWide :: Bool -> [String] -> String -> String
showWide wide bars
  | wide      = showString (concat (reverse bars)) . showString "|\n"
  | otherwise = id

showsBars :: [String] -> ShowS
showsBars bars
  = case bars of
      [] -> id
      _  -> showString (concat (reverse (tail bars))) . showString node

node :: String
node           = "+--"

withBar, withEmpty :: [String] -> [String]
withBar bars   = "|  ":bars
withEmpty bars = "   ":bars

{--------------------------------------------------------------------
  Typeable
--------------------------------------------------------------------}

INSTANCE_TYPEABLE2(Map,mapTc,"Map")

{--------------------------------------------------------------------
  Assertions
--------------------------------------------------------------------}
-- | /O(n)/. Test if the internal map structure is valid.
--
-- > valid (fromAscList [(3,"b"), (5,"a")]) == True
-- > valid (fromAscList [(5,"a"), (3,"b")]) == False

valid :: Ord k => Map k a -> Bool
valid t
  = balanced t && ordered t && validsize t

ordered :: Ord a => Map a b -> Bool
ordered t
  = bounded (const True) (const True) t
  where
    bounded lo hi t'
      = case t' of
          Tip              -> True
          Bin _ kx _ l r  -> (lo kx) && (hi kx) && bounded lo (<kx) l && bounded (>kx) hi r

-- | Exported only for "Debug.QuickCheck"
balanced :: Map k a -> Bool
balanced t
  = case t of
      Tip            -> True
      Bin _ _ _ l r  -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) &&
                        balanced l && balanced r

validsize :: Map a b -> Bool
validsize t
  = (realsize t == Just (size t))
  where
    realsize t'
      = case t' of
          Tip            -> Just 0
          Bin sz _ _ l r -> case (realsize l,realsize r) of
                            (Just n,Just m)  | n+m+1 == sz  -> Just sz
                            _                               -> Nothing

{--------------------------------------------------------------------
  Utilities
--------------------------------------------------------------------}

-- | /O(1)/.  Decompose a map into pieces based on the structure of the underlying
-- tree.  This function is useful for consuming a map in parallel.
--
-- No guarantee is made as to the sizes of the pieces; an internal, but
-- deterministic process determines this.  However, it is guaranteed that the pieces
-- returned will be in ascending order (all elements in the first submap less than all
-- elements in the second, and so on).
--
-- Examples:
--
-- > splitRoot (fromList (zip [1..6] ['a'..])) ==
-- >   [fromList [(1,'a'),(2,'b'),(3,'c')],fromList [(4,'d')],fromList [(5,'e'),(6,'f')]]
--
-- > splitRoot empty == []
--
--  Note that the current implementation does not return more than three submaps,
--  but you should not depend on this behaviour because it can change in the
--  future without notice.
splitRoot :: Map k b -> [Map k b]
splitRoot orig =
  case orig of
    Tip           -> []
    Bin _ k v l r -> [l, singleton k v, r]
{-# INLINE splitRoot #-}