File: Base.hs

package info (click to toggle)
ghc 8.0.1-17
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 55,080 kB
  • ctags: 9,332
  • sloc: haskell: 363,120; ansic: 54,900; sh: 4,782; makefile: 974; perl: 542; asm: 315; python: 306; xml: 154; lisp: 7
file content (1616 lines) | stat: -rw-r--r-- 56,713 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__
{-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-}
#endif
#if !defined(TESTING) && __GLASGOW_HASKELL__ >= 703
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE TypeFamilies #-}
#endif

#include "containers.h"

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Set.Base
-- Copyright   :  (c) Daan Leijen 2002
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- An efficient implementation of sets.
--
-- These modules are intended to be imported qualified, to avoid name
-- clashes with Prelude functions, e.g.
--
-- >  import Data.Set (Set)
-- >  import qualified Data.Set as Set
--
-- The implementation of 'Set' is based on /size balanced/ binary trees (or
-- trees of /bounded balance/) as described by:
--
--    * Stephen Adams, \"/Efficient sets: a balancing act/\",
--      Journal of Functional Programming 3(4):553-562, October 1993,
--      <http://www.swiss.ai.mit.edu/~adams/BB/>.
--
--    * J. Nievergelt and E.M. Reingold,
--      \"/Binary search trees of bounded balance/\",
--      SIAM journal of computing 2(1), March 1973.
--
-- Note that the implementation is /left-biased/ -- the elements of a
-- first argument are always preferred to the second, for example in
-- 'union' or 'insert'.  Of course, left-biasing can only be observed
-- when equality is an equivalence relation instead of structural
-- equality.
--
-- /Warning/: The size of the set must not exceed @maxBound::Int@. Violation of
-- this condition is not detected and if the size limit is exceeded, its
-- behaviour is undefined.
-----------------------------------------------------------------------------

-- [Note: Using INLINABLE]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- It is crucial to the performance that the functions specialize on the Ord
-- type when possible. GHC 7.0 and higher does this by itself when it sees th
-- unfolding of a function -- that is why all public functions are marked
-- INLINABLE (that exposes the unfolding).


-- [Note: Using INLINE]
-- ~~~~~~~~~~~~~~~~~~~~
-- For other compilers and GHC pre 7.0, we mark some of the functions INLINE.
-- We mark the functions that just navigate down the tree (lookup, insert,
-- delete and similar). That navigation code gets inlined and thus specialized
-- when possible. There is a price to pay -- code growth. The code INLINED is
-- therefore only the tree navigation, all the real work (rebalancing) is not
-- INLINED by using a NOINLINE.
--
-- All methods marked INLINE have to be nonrecursive -- a 'go' function doing
-- the real work is provided.


-- [Note: Type of local 'go' function]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- If the local 'go' function uses an Ord class, it sometimes heap-allocates
-- the Ord dictionary when the 'go' function does not have explicit type.
-- In that case we give 'go' explicit type. But this slightly decrease
-- performance, as the resulting 'go' function can float out to top level.


-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- As opposed to IntSet, when 'go' function captures an argument, increased
-- heap-allocation can occur: sometimes in a polymorphic function, the 'go'
-- floats out of its enclosing function and then it heap-allocates the
-- dictionary and the argument. Maybe it floats out too late and strictness
-- analyzer cannot see that these could be passed on stack.
--
-- For example, change 'member' so that its local 'go' function is not passing
-- argument x and then look at the resulting code for hedgeInt.


-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of Set matters when considering performance.
-- Currently in GHC 7.0, when type has 2 constructors, a forward conditional
-- jump is made when successfully matching second constructor. Successful match
-- of first constructor results in the forward jump not taken.
-- On GHC 7.0, reordering constructors from Tip | Bin to Bin | Tip
-- improves the benchmark by up to 10% on x86.

module Data.Set.Base (
            -- * Set type
              Set(..)       -- instance Eq,Ord,Show,Read,Data,Typeable

            -- * Operators
            , (\\)

            -- * Query
            , null
            , size
            , member
            , notMember
            , lookupLT
            , lookupGT
            , lookupLE
            , lookupGE
            , isSubsetOf
            , isProperSubsetOf

            -- * Construction
            , empty
            , singleton
            , insert
            , delete

            -- * Combine
            , union
            , unions
            , difference
            , intersection

            -- * Filter
            , filter
            , partition
            , split
            , splitMember
            , splitRoot

            -- * Indexed
            , lookupIndex
            , findIndex
            , elemAt
            , deleteAt

            -- * Map
            , map
            , mapMonotonic

            -- * Folds
            , foldr
            , foldl
            -- ** Strict folds
            , foldr'
            , foldl'
            -- ** Legacy folds
            , fold

            -- * Min\/Max
            , findMin
            , findMax
            , deleteMin
            , deleteMax
            , deleteFindMin
            , deleteFindMax
            , maxView
            , minView

            -- * Conversion

            -- ** List
            , elems
            , toList
            , fromList

            -- ** Ordered list
            , toAscList
            , toDescList
            , fromAscList
            , fromDistinctAscList

            -- * Debugging
            , showTree
            , showTreeWith
            , valid

            -- Internals (for testing)
            , bin
            , balanced
            , link
            , merge
            ) where

import Prelude hiding (filter,foldl,foldr,null,map)
import qualified Data.List as List
import Data.Bits (shiftL, shiftR)
#if !MIN_VERSION_base(4,8,0)
import Data.Monoid (Monoid(..))
#endif
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup (Semigroup((<>), stimes), stimesIdempotentMonoid)
#endif
import qualified Data.Foldable as Foldable
import Data.Typeable
import Control.DeepSeq (NFData(rnf))

import Data.Utils.StrictFold
import Data.Utils.StrictPair

#if __GLASGOW_HASKELL__
import GHC.Exts ( build )
#if __GLASGOW_HASKELL__ >= 708
import qualified GHC.Exts as GHCExts
#endif
import Text.Read
import Data.Data
#endif


{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}
infixl 9 \\ --

-- | /O(n+m)/. See 'difference'.
(\\) :: Ord a => Set a -> Set a -> Set a
m1 \\ m2 = difference m1 m2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE (\\) #-}
#endif

{--------------------------------------------------------------------
  Sets are size balanced trees
--------------------------------------------------------------------}
-- | A set of values @a@.

-- See Note: Order of constructors
data Set a    = Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a)
              | Tip

type Size     = Int

#if __GLASGOW_HASKELL__ >= 708
type role Set nominal
#endif

instance Ord a => Monoid (Set a) where
    mempty  = empty
    mconcat = unions
#if !(MIN_VERSION_base(4,9,0))
    mappend = union
#else
    mappend = (<>)

instance Ord a => Semigroup (Set a) where
    (<>)    = union
    stimes  = stimesIdempotentMonoid
#endif


instance Foldable.Foldable Set where
    fold = go
      where go Tip = mempty
            go (Bin 1 k _ _) = k
            go (Bin _ k l r) = go l `mappend` (k `mappend` go r)
    {-# INLINABLE fold #-}
    foldr = foldr
    {-# INLINE foldr #-}
    foldl = foldl
    {-# INLINE foldl #-}
    foldMap f t = go t
      where go Tip = mempty
            go (Bin 1 k _ _) = f k
            go (Bin _ k l r) = go l `mappend` (f k `mappend` go r)
    {-# INLINE foldMap #-}

#if MIN_VERSION_base(4,6,0)
    foldl' = foldl'
    {-# INLINE foldl' #-}
    foldr' = foldr'
    {-# INLINE foldr' #-}
#endif
#if MIN_VERSION_base(4,8,0)
    length = size
    {-# INLINE length #-}
    null   = null
    {-# INLINE null #-}
    toList = toList
    {-# INLINE toList #-}
    elem = go
      where STRICT_1_OF_2(go)
            go _ Tip = False
            go x (Bin _ y l r) = x == y || go x l || go x r
    {-# INLINABLE elem #-}
    minimum = findMin
    {-# INLINE minimum #-}
    maximum = findMax
    {-# INLINE maximum #-}
    sum = foldl' (+) 0
    {-# INLINABLE sum #-}
    product = foldl' (*) 1
    {-# INLINABLE product #-}
#endif


#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.

instance (Data a, Ord a) => Data (Set a) where
  gfoldl f z set = z fromList `f` (toList set)
  toConstr _     = fromListConstr
  gunfold k z c  = case constrIndex c of
    1 -> k (z fromList)
    _ -> error "gunfold"
  dataTypeOf _   = setDataType
  dataCast1 f    = gcast1 f

fromListConstr :: Constr
fromListConstr = mkConstr setDataType "fromList" [] Prefix

setDataType :: DataType
setDataType = mkDataType "Data.Set.Base.Set" [fromListConstr]

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | /O(1)/. Is this the empty set?
null :: Set a -> Bool
null Tip      = True
null (Bin {}) = False
{-# INLINE null #-}

-- | /O(1)/. The number of elements in the set.
size :: Set a -> Int
size Tip = 0
size (Bin sz _ _ _) = sz
{-# INLINE size #-}

-- | /O(log n)/. Is the element in the set?
member :: Ord a => a -> Set a -> Bool
member = go
  where
    STRICT_1_OF_2(go)
    go _ Tip = False
    go x (Bin _ y l r) = case compare x y of
      LT -> go x l
      GT -> go x r
      EQ -> True
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE member #-}
#else
{-# INLINE member #-}
#endif

-- | /O(log n)/. Is the element not in the set?
notMember :: Ord a => a -> Set a -> Bool
notMember a t = not $ member a t
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE notMember #-}
#else
{-# INLINE notMember #-}
#endif

-- | /O(log n)/. Find largest element smaller than the given one.
--
-- > lookupLT 3 (fromList [3, 5]) == Nothing
-- > lookupLT 5 (fromList [3, 5]) == Just 3
lookupLT :: Ord a => a -> Set a -> Maybe a
lookupLT = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing x (Bin _ y l r) | x <= y = goNothing x l
                              | otherwise = goJust x y r

    STRICT_1_OF_3(goJust)
    goJust _ best Tip = Just best
    goJust x best (Bin _ y l r) | x <= y = goJust x best l
                                | otherwise = goJust x y r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupLT #-}
#else
{-# INLINE lookupLT #-}
#endif

-- | /O(log n)/. Find smallest element greater than the given one.
--
-- > lookupGT 4 (fromList [3, 5]) == Just 5
-- > lookupGT 5 (fromList [3, 5]) == Nothing
lookupGT :: Ord a => a -> Set a -> Maybe a
lookupGT = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing x (Bin _ y l r) | x < y = goJust x y l
                              | otherwise = goNothing x r

    STRICT_1_OF_3(goJust)
    goJust _ best Tip = Just best
    goJust x best (Bin _ y l r) | x < y = goJust x y l
                                | otherwise = goJust x best r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupGT #-}
#else
{-# INLINE lookupGT #-}
#endif

-- | /O(log n)/. Find largest element smaller or equal to the given one.
--
-- > lookupLE 2 (fromList [3, 5]) == Nothing
-- > lookupLE 4 (fromList [3, 5]) == Just 3
-- > lookupLE 5 (fromList [3, 5]) == Just 5
lookupLE :: Ord a => a -> Set a -> Maybe a
lookupLE = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing x (Bin _ y l r) = case compare x y of LT -> goNothing x l
                                                    EQ -> Just y
                                                    GT -> goJust x y r

    STRICT_1_OF_3(goJust)
    goJust _ best Tip = Just best
    goJust x best (Bin _ y l r) = case compare x y of LT -> goJust x best l
                                                      EQ -> Just y
                                                      GT -> goJust x y r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupLE #-}
#else
{-# INLINE lookupLE #-}
#endif

-- | /O(log n)/. Find smallest element greater or equal to the given one.
--
-- > lookupGE 3 (fromList [3, 5]) == Just 3
-- > lookupGE 4 (fromList [3, 5]) == Just 5
-- > lookupGE 6 (fromList [3, 5]) == Nothing
lookupGE :: Ord a => a -> Set a -> Maybe a
lookupGE = goNothing
  where
    STRICT_1_OF_2(goNothing)
    goNothing _ Tip = Nothing
    goNothing x (Bin _ y l r) = case compare x y of LT -> goJust x y l
                                                    EQ -> Just y
                                                    GT -> goNothing x r

    STRICT_1_OF_3(goJust)
    goJust _ best Tip = Just best
    goJust x best (Bin _ y l r) = case compare x y of LT -> goJust x y l
                                                      EQ -> Just y
                                                      GT -> goJust x best r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupGE #-}
#else
{-# INLINE lookupGE #-}
#endif

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty set.
empty  :: Set a
empty = Tip
{-# INLINE empty #-}

-- | /O(1)/. Create a singleton set.
singleton :: a -> Set a
singleton x = Bin 1 x Tip Tip
{-# INLINE singleton #-}

{--------------------------------------------------------------------
  Insertion, Deletion
--------------------------------------------------------------------}
-- | /O(log n)/. Insert an element in a set.
-- If the set already contains an element equal to the given value,
-- it is replaced with the new value.

-- See Note: Type of local 'go' function
insert :: Ord a => a -> Set a -> Set a
insert = go
  where
    go :: Ord a => a -> Set a -> Set a
    STRICT_1_OF_2(go)
    go x Tip = singleton x
    go x (Bin sz y l r) = case compare x y of
        LT -> balanceL y (go x l) r
        GT -> balanceR y l (go x r)
        EQ -> Bin sz x l r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE insert #-}
#else
{-# INLINE insert #-}
#endif

-- Insert an element to the set only if it is not in the set.
-- Used by `union`.

-- See Note: Type of local 'go' function
insertR :: Ord a => a -> Set a -> Set a
insertR = go
  where
    go :: Ord a => a -> Set a -> Set a
    STRICT_1_OF_2(go)
    go x Tip = singleton x
    go x t@(Bin _ y l r) = case compare x y of
        LT -> balanceL y (go x l) r
        GT -> balanceR y l (go x r)
        EQ -> t
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE insertR #-}
#else
{-# INLINE insertR #-}
#endif

-- | /O(log n)/. Delete an element from a set.

-- See Note: Type of local 'go' function
delete :: Ord a => a -> Set a -> Set a
delete = go
  where
    go :: Ord a => a -> Set a -> Set a
    STRICT_1_OF_2(go)
    go _ Tip = Tip
    go x (Bin _ y l r) = case compare x y of
        LT -> balanceR y (go x l) r
        GT -> balanceL y l (go x r)
        EQ -> glue l r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE delete #-}
#else
{-# INLINE delete #-}
#endif

{--------------------------------------------------------------------
  Subset
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal).
isProperSubsetOf :: Ord a => Set a -> Set a -> Bool
isProperSubsetOf s1 s2
    = (size s1 < size s2) && (isSubsetOf s1 s2)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE isProperSubsetOf #-}
#endif


-- | /O(n+m)/. Is this a subset?
-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@.
isSubsetOf :: Ord a => Set a -> Set a -> Bool
isSubsetOf t1 t2
  = (size t1 <= size t2) && (isSubsetOfX t1 t2)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE isSubsetOf #-}
#endif

isSubsetOfX :: Ord a => Set a -> Set a -> Bool
isSubsetOfX Tip _ = True
isSubsetOfX _ Tip = False
isSubsetOfX (Bin _ x l r) t
  = found && isSubsetOfX l lt && isSubsetOfX r gt
  where
    (lt,found,gt) = splitMember x t
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE isSubsetOfX #-}
#endif


{--------------------------------------------------------------------
  Minimal, Maximal
--------------------------------------------------------------------}
-- | /O(log n)/. The minimal element of a set.
findMin :: Set a -> a
findMin (Bin _ x Tip _) = x
findMin (Bin _ _ l _)   = findMin l
findMin Tip             = error "Set.findMin: empty set has no minimal element"

-- | /O(log n)/. The maximal element of a set.
findMax :: Set a -> a
findMax (Bin _ x _ Tip)  = x
findMax (Bin _ _ _ r)    = findMax r
findMax Tip              = error "Set.findMax: empty set has no maximal element"

-- | /O(log n)/. Delete the minimal element. Returns an empty set if the set is empty.
deleteMin :: Set a -> Set a
deleteMin (Bin _ _ Tip r) = r
deleteMin (Bin _ x l r)   = balanceR x (deleteMin l) r
deleteMin Tip             = Tip

-- | /O(log n)/. Delete the maximal element. Returns an empty set if the set is empty.
deleteMax :: Set a -> Set a
deleteMax (Bin _ _ l Tip) = l
deleteMax (Bin _ x l r)   = balanceL x l (deleteMax r)
deleteMax Tip             = Tip

{--------------------------------------------------------------------
  Union.
--------------------------------------------------------------------}
-- | The union of a list of sets: (@'unions' == 'foldl' 'union' 'empty'@).
unions :: Ord a => [Set a] -> Set a
unions = foldlStrict union empty
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE unions #-}
#endif

-- | /O(n+m)/. The union of two sets, preferring the first set when
-- equal elements are encountered.
-- The implementation uses the efficient /hedge-union/ algorithm.
union :: Ord a => Set a -> Set a -> Set a
union Tip t2  = t2
union t1 Tip  = t1
union t1 t2 = hedgeUnion NothingS NothingS t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE union #-}
#endif

hedgeUnion :: Ord a => MaybeS a -> MaybeS a -> Set a -> Set a -> Set a
hedgeUnion _   _   t1  Tip = t1
hedgeUnion blo bhi Tip (Bin _ x l r) = link x (filterGt blo l) (filterLt bhi r)
hedgeUnion _   _   t1  (Bin _ x Tip Tip) = insertR x t1   -- According to benchmarks, this special case increases
                                                          -- performance up to 30%. It does not help in difference or intersection.
hedgeUnion blo bhi (Bin _ x l r) t2 = link x (hedgeUnion blo bmi l (trim blo bmi t2))
                                             (hedgeUnion bmi bhi r (trim bmi bhi t2))
  where bmi = JustS x
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE hedgeUnion #-}
#endif

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference of two sets.
-- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/.
difference :: Ord a => Set a -> Set a -> Set a
difference Tip _   = Tip
difference t1 Tip  = t1
difference t1 t2   = hedgeDiff NothingS NothingS t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE difference #-}
#endif

hedgeDiff :: Ord a => MaybeS a -> MaybeS a -> Set a -> Set a -> Set a
hedgeDiff _   _   Tip           _ = Tip
hedgeDiff blo bhi (Bin _ x l r) Tip = link x (filterGt blo l) (filterLt bhi r)
hedgeDiff blo bhi t (Bin _ x l r) = merge (hedgeDiff blo bmi (trim blo bmi t) l)
                                          (hedgeDiff bmi bhi (trim bmi bhi t) r)
  where bmi = JustS x
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE hedgeDiff #-}
#endif

{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The intersection of two sets.  The implementation uses an
-- efficient /hedge/ algorithm comparable with /hedge-union/.  Elements of the
-- result come from the first set, so for example
--
-- > import qualified Data.Set as S
-- > data AB = A | B deriving Show
-- > instance Ord AB where compare _ _ = EQ
-- > instance Eq AB where _ == _ = True
-- > main = print (S.singleton A `S.intersection` S.singleton B,
-- >               S.singleton B `S.intersection` S.singleton A)
--
-- prints @(fromList [A],fromList [B])@.
intersection :: Ord a => Set a -> Set a -> Set a
intersection Tip _ = Tip
intersection _ Tip = Tip
intersection t1 t2 = hedgeInt NothingS NothingS t1 t2
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE intersection #-}
#endif

hedgeInt :: Ord a => MaybeS a -> MaybeS a -> Set a -> Set a -> Set a
hedgeInt _ _ _   Tip = Tip
hedgeInt _ _ Tip _   = Tip
hedgeInt blo bhi (Bin _ x l r) t2 = let l' = hedgeInt blo bmi l (trim blo bmi t2)
                                        r' = hedgeInt bmi bhi r (trim bmi bhi t2)
                                    in if x `member` t2 then link x l' r' else merge l' r'
  where bmi = JustS x
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE hedgeInt #-}
#endif

{--------------------------------------------------------------------
  Filter and partition
--------------------------------------------------------------------}
-- | /O(n)/. Filter all elements that satisfy the predicate.
filter :: (a -> Bool) -> Set a -> Set a
filter _ Tip = Tip
filter p (Bin _ x l r)
    | p x       = link x (filter p l) (filter p r)
    | otherwise = merge (filter p l) (filter p r)

-- | /O(n)/. Partition the set into two sets, one with all elements that satisfy
-- the predicate and one with all elements that don't satisfy the predicate.
-- See also 'split'.
partition :: (a -> Bool) -> Set a -> (Set a,Set a)
partition p0 t0 = toPair $ go p0 t0
  where
    go _ Tip = (Tip :*: Tip)
    go p (Bin _ x l r) = case (go p l, go p r) of
      ((l1 :*: l2), (r1 :*: r2))
        | p x       -> link x l1 r1 :*: merge l2 r2
        | otherwise -> merge l1 r1 :*: link x l2 r2

{----------------------------------------------------------------------
  Map
----------------------------------------------------------------------}

-- | /O(n*log n)/.
-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@.
--
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@

map :: Ord b => (a->b) -> Set a -> Set b
map f = fromList . List.map f . toList
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE map #-}
#endif

-- | /O(n)/. The
--
-- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is monotonic.
-- /The precondition is not checked./
-- Semi-formally, we have:
--
-- > and [x < y ==> f x < f y | x <- ls, y <- ls]
-- >                     ==> mapMonotonic f s == map f s
-- >     where ls = toList s

mapMonotonic :: (a->b) -> Set a -> Set b
mapMonotonic _ Tip = Tip
mapMonotonic f (Bin sz x l r) = Bin sz (f x) (mapMonotonic f l) (mapMonotonic f r)

{--------------------------------------------------------------------
  Fold
--------------------------------------------------------------------}
-- | /O(n)/. Fold the elements in the set using the given right-associative
-- binary operator. This function is an equivalent of 'foldr' and is present
-- for compatibility only.
--
-- /Please note that fold will be deprecated in the future and removed./
fold :: (a -> b -> b) -> b -> Set a -> b
fold = foldr
{-# INLINE fold #-}

-- | /O(n)/. Fold the elements in the set using the given right-associative
-- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'toAscList'@.
--
-- For example,
--
-- > toAscList set = foldr (:) [] set
foldr :: (a -> b -> b) -> b -> Set a -> b
foldr f z = go z
  where
    go z' Tip           = z'
    go z' (Bin _ x l r) = go (f x (go z' r)) l
{-# INLINE foldr #-}

-- | /O(n)/. A strict version of 'foldr'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldr' :: (a -> b -> b) -> b -> Set a -> b
foldr' f z = go z
  where
    STRICT_1_OF_2(go)
    go z' Tip           = z'
    go z' (Bin _ x l r) = go (f x (go z' r)) l
{-# INLINE foldr' #-}

-- | /O(n)/. Fold the elements in the set using the given left-associative
-- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'toAscList'@.
--
-- For example,
--
-- > toDescList set = foldl (flip (:)) [] set
foldl :: (a -> b -> a) -> a -> Set b -> a
foldl f z = go z
  where
    go z' Tip           = z'
    go z' (Bin _ x l r) = go (f (go z' l) x) r
{-# INLINE foldl #-}

-- | /O(n)/. A strict version of 'foldl'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldl' :: (a -> b -> a) -> a -> Set b -> a
foldl' f z = go z
  where
    STRICT_1_OF_2(go)
    go z' Tip           = z'
    go z' (Bin _ x l r) = go (f (go z' l) x) r
{-# INLINE foldl' #-}

{--------------------------------------------------------------------
  List variations
--------------------------------------------------------------------}
-- | /O(n)/. An alias of 'toAscList'. The elements of a set in ascending order.
-- Subject to list fusion.
elems :: Set a -> [a]
elems = toAscList

{--------------------------------------------------------------------
  Lists
--------------------------------------------------------------------}
#if __GLASGOW_HASKELL__ >= 708
instance (Ord a) => GHCExts.IsList (Set a) where
  type Item (Set a) = a
  fromList = fromList
  toList   = toList
#endif

-- | /O(n)/. Convert the set to a list of elements. Subject to list fusion.
toList :: Set a -> [a]
toList = toAscList

-- | /O(n)/. Convert the set to an ascending list of elements. Subject to list fusion.
toAscList :: Set a -> [a]
toAscList = foldr (:) []

-- | /O(n)/. Convert the set to a descending list of elements. Subject to list
-- fusion.
toDescList :: Set a -> [a]
toDescList = foldl (flip (:)) []

-- List fusion for the list generating functions.
#if __GLASGOW_HASKELL__
-- The foldrFB and foldlFB are foldr and foldl equivalents, used for list fusion.
-- They are important to convert unfused to{Asc,Desc}List back, see mapFB in prelude.
foldrFB :: (a -> b -> b) -> b -> Set a -> b
foldrFB = foldr
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> b -> a) -> a -> Set b -> a
foldlFB = foldl
{-# INLINE[0] foldlFB #-}

-- Inline elems and toList, so that we need to fuse only toAscList.
{-# INLINE elems #-}
{-# INLINE toList #-}

-- The fusion is enabled up to phase 2 included. If it does not succeed,
-- convert in phase 1 the expanded to{Asc,Desc}List calls back to
-- to{Asc,Desc}List.  In phase 0, we inline fold{lr}FB (which were used in
-- a list fusion, otherwise it would go away in phase 1), and let compiler do
-- whatever it wants with to{Asc,Desc}List -- it was forbidden to inline it
-- before phase 0, otherwise the fusion rules would not fire at all.
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "Set.toAscList" [~1] forall s . toAscList s = build (\c n -> foldrFB c n s) #-}
{-# RULES "Set.toAscListBack" [1] foldrFB (:) [] = toAscList #-}
{-# RULES "Set.toDescList" [~1] forall s . toDescList s = build (\c n -> foldlFB (\xs x -> c x xs) n s) #-}
{-# RULES "Set.toDescListBack" [1] foldlFB (\xs x -> x : xs) [] = toDescList #-}
#endif

-- | /O(n*log n)/. Create a set from a list of elements.
--
-- If the elements are ordered, a linear-time implementation is used,
-- with the performance equal to 'fromDistinctAscList'.

-- For some reason, when 'singleton' is used in fromList or in
-- create, it is not inlined, so we inline it manually.
fromList :: Ord a => [a] -> Set a
fromList [] = Tip
fromList [x] = Bin 1 x Tip Tip
fromList (x0 : xs0) | not_ordered x0 xs0 = fromList' (Bin 1 x0 Tip Tip) xs0
                    | otherwise = go (1::Int) (Bin 1 x0 Tip Tip) xs0
  where
    not_ordered _ [] = False
    not_ordered x (y : _) = x >= y
    {-# INLINE not_ordered #-}

    fromList' t0 xs = foldlStrict ins t0 xs
      where ins t x = insert x t

    STRICT_1_OF_3(go)
    go _ t [] = t
    go _ t [x] = insertMax x t
    go s l xs@(x : xss) | not_ordered x xss = fromList' l xs
                        | otherwise = case create s xss of
                            (r, ys, []) -> go (s `shiftL` 1) (link x l r) ys
                            (r, _,  ys) -> fromList' (link x l r) ys

    -- The create is returning a triple (tree, xs, ys). Both xs and ys
    -- represent not yet processed elements and only one of them can be nonempty.
    -- If ys is nonempty, the keys in ys are not ordered with respect to tree
    -- and must be inserted using fromList'. Otherwise the keys have been
    -- ordered so far.
    STRICT_1_OF_2(create)
    create _ [] = (Tip, [], [])
    create s xs@(x : xss)
      | s == 1 = if not_ordered x xss then (Bin 1 x Tip Tip, [], xss)
                                      else (Bin 1 x Tip Tip, xss, [])
      | otherwise = case create (s `shiftR` 1) xs of
                      res@(_, [], _) -> res
                      (l, [y], zs) -> (insertMax y l, [], zs)
                      (l, ys@(y:yss), _) | not_ordered y yss -> (l, [], ys)
                                         | otherwise -> case create (s `shiftR` 1) yss of
                                                   (r, zs, ws) -> (link y l r, zs, ws)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromList #-}
#endif

{--------------------------------------------------------------------
  Building trees from ascending/descending lists can be done in linear time.

  Note that if [xs] is ascending that:
    fromAscList xs == fromList xs
--------------------------------------------------------------------}
-- | /O(n)/. Build a set from an ascending list in linear time.
-- /The precondition (input list is ascending) is not checked./
fromAscList :: Eq a => [a] -> Set a
fromAscList xs
  = fromDistinctAscList (combineEq xs)
  where
  -- [combineEq xs] combines equal elements with [const] in an ordered list [xs]
  combineEq xs'
    = case xs' of
        []     -> []
        [x]    -> [x]
        (x:xx) -> combineEq' x xx

  combineEq' z [] = [z]
  combineEq' z (x:xs')
    | z==x      =   combineEq' z xs'
    | otherwise = z:combineEq' x xs'
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE fromAscList #-}
#endif


-- | /O(n)/. Build a set from an ascending list of distinct elements in linear time.
-- /The precondition (input list is strictly ascending) is not checked./

-- For some reason, when 'singleton' is used in fromDistinctAscList or in
-- create, it is not inlined, so we inline it manually.
fromDistinctAscList :: [a] -> Set a
fromDistinctAscList [] = Tip
fromDistinctAscList (x0 : xs0) = go (1::Int) (Bin 1 x0 Tip Tip) xs0
  where
    STRICT_1_OF_3(go)
    go _ t [] = t
    go s l (x : xs) = case create s xs of
                        (r, ys) -> go (s `shiftL` 1) (link x l r) ys

    STRICT_1_OF_2(create)
    create _ [] = (Tip, [])
    create s xs@(x : xs')
      | s == 1 = (Bin 1 x Tip Tip, xs')
      | otherwise = case create (s `shiftR` 1) xs of
                      res@(_, []) -> res
                      (l, y:ys) -> case create (s `shiftR` 1) ys of
                        (r, zs) -> (link y l r, zs)

{--------------------------------------------------------------------
  Eq converts the set to a list. In a lazy setting, this
  actually seems one of the faster methods to compare two trees
  and it is certainly the simplest :-)
--------------------------------------------------------------------}
instance Eq a => Eq (Set a) where
  t1 == t2  = (size t1 == size t2) && (toAscList t1 == toAscList t2)

{--------------------------------------------------------------------
  Ord
--------------------------------------------------------------------}

instance Ord a => Ord (Set a) where
    compare s1 s2 = compare (toAscList s1) (toAscList s2)

{--------------------------------------------------------------------
  Show
--------------------------------------------------------------------}
instance Show a => Show (Set a) where
  showsPrec p xs = showParen (p > 10) $
    showString "fromList " . shows (toList xs)

{--------------------------------------------------------------------
  Read
--------------------------------------------------------------------}
instance (Read a, Ord a) => Read (Set a) where
#ifdef __GLASGOW_HASKELL__
  readPrec = parens $ prec 10 $ do
    Ident "fromList" <- lexP
    xs <- readPrec
    return (fromList xs)

  readListPrec = readListPrecDefault
#else
  readsPrec p = readParen (p > 10) $ \ r -> do
    ("fromList",s) <- lex r
    (xs,t) <- reads s
    return (fromList xs,t)
#endif

{--------------------------------------------------------------------
  Typeable/Data
--------------------------------------------------------------------}

INSTANCE_TYPEABLE1(Set,setTc,"Set")

{--------------------------------------------------------------------
  NFData
--------------------------------------------------------------------}

instance NFData a => NFData (Set a) where
    rnf Tip           = ()
    rnf (Bin _ y l r) = rnf y `seq` rnf l `seq` rnf r

{--------------------------------------------------------------------
  Utility functions that return sub-ranges of the original
  tree. Some functions take a `Maybe value` as an argument to
  allow comparisons against infinite values. These are called `blow`
  (Nothing is -\infty) and `bhigh` (here Nothing is +\infty).
  We use MaybeS value, which is a Maybe strict in the Just case.

  [trim blow bhigh t]   A tree that is either empty or where [x > blow]
                        and [x < bhigh] for the value [x] of the root.
  [filterGt blow t]     A tree where for all values [k]. [k > blow]
  [filterLt bhigh t]    A tree where for all values [k]. [k < bhigh]

  [split k t]           Returns two trees [l] and [r] where all values
                        in [l] are <[k] and all keys in [r] are >[k].
  [splitMember k t]     Just like [split] but also returns whether [k]
                        was found in the tree.
--------------------------------------------------------------------}

data MaybeS a = NothingS | JustS !a

{--------------------------------------------------------------------
  [trim blo bhi t] trims away all subtrees that surely contain no
  values between the range [blo] to [bhi]. The returned tree is either
  empty or the key of the root is between @blo@ and @bhi@.
--------------------------------------------------------------------}
trim :: Ord a => MaybeS a -> MaybeS a -> Set a -> Set a
trim NothingS   NothingS   t = t
trim (JustS lx) NothingS   t = greater lx t where greater lo (Bin _ x _ r) | x <= lo = greater lo r
                                                  greater _  t' = t'
trim NothingS   (JustS hx) t = lesser hx t  where lesser  hi (Bin _ x l _) | x >= hi = lesser  hi l
                                                  lesser  _  t' = t'
trim (JustS lx) (JustS hx) t = middle lx hx t  where middle lo hi (Bin _ x _ r) | x <= lo = middle lo hi r
                                                     middle lo hi (Bin _ x l _) | x >= hi = middle lo hi l
                                                     middle _  _  t' = t'
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE trim #-}
#endif

{--------------------------------------------------------------------
  [filterGt b t] filter all values >[b] from tree [t]
  [filterLt b t] filter all values <[b] from tree [t]
--------------------------------------------------------------------}
filterGt :: Ord a => MaybeS a -> Set a -> Set a
filterGt NothingS t = t
filterGt (JustS b) t = filter' b t
  where filter' _   Tip = Tip
        filter' b' (Bin _ x l r) =
          case compare b' x of LT -> link x (filter' b' l) r
                               EQ -> r
                               GT -> filter' b' r
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE filterGt #-}
#endif

filterLt :: Ord a => MaybeS a -> Set a -> Set a
filterLt NothingS t = t
filterLt (JustS b) t = filter' b t
  where filter' _   Tip = Tip
        filter' b' (Bin _ x l r) =
          case compare x b' of LT -> link x l (filter' b' r)
                               EQ -> l
                               GT -> filter' b' l
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE filterLt #-}
#endif

{--------------------------------------------------------------------
  Split
--------------------------------------------------------------------}
-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@
-- where @set1@ comprises the elements of @set@ less than @x@ and @set2@
-- comprises the elements of @set@ greater than @x@.
split :: Ord a => a -> Set a -> (Set a,Set a)
split x0 t0 = toPair $ go x0 t0
  where
    go _ Tip = (Tip :*: Tip)
    go x (Bin _ y l r)
      = case compare x y of
          LT -> let (lt :*: gt) = go x l in (lt :*: link y gt r)
          GT -> let (lt :*: gt) = go x r in (link y l lt :*: gt)
          EQ -> (l :*: r)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE split #-}
#endif

-- | /O(log n)/. Performs a 'split' but also returns whether the pivot
-- element was found in the original set.
splitMember :: Ord a => a -> Set a -> (Set a,Bool,Set a)
splitMember _ Tip = (Tip, False, Tip)
splitMember x (Bin _ y l r)
   = case compare x y of
       LT -> let (lt, found, gt) = splitMember x l
                 gt' = link y gt r
             in gt' `seq` (lt, found, gt')
       GT -> let (lt, found, gt) = splitMember x r
                 lt' = link y l lt
             in lt' `seq` (lt', found, gt)
       EQ -> (l, True, r)
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE splitMember #-}
#endif

{--------------------------------------------------------------------
  Indexing
--------------------------------------------------------------------}

-- | /O(log n)/. Return the /index/ of an element, which is its zero-based
-- index in the sorted sequence of elements. The index is a number from /0/ up
-- to, but not including, the 'size' of the set. Calls 'error' when the element
-- is not a 'member' of the set.
--
-- > findIndex 2 (fromList [5,3])    Error: element is not in the set
-- > findIndex 3 (fromList [5,3]) == 0
-- > findIndex 5 (fromList [5,3]) == 1
-- > findIndex 6 (fromList [5,3])    Error: element is not in the set

-- See Note: Type of local 'go' function
findIndex :: Ord a => a -> Set a -> Int
findIndex = go 0
  where
    go :: Ord a => Int -> a -> Set a -> Int
    STRICT_1_OF_3(go)
    STRICT_2_OF_3(go)
    go _   _ Tip  = error "Set.findIndex: element is not in the set"
    go idx x (Bin _ kx l r) = case compare x kx of
      LT -> go idx x l
      GT -> go (idx + size l + 1) x r
      EQ -> idx + size l
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE findIndex #-}
#endif

-- | /O(log n)/. Lookup the /index/ of an element, which is its zero-based index in
-- the sorted sequence of elements. The index is a number from /0/ up to, but not
-- including, the 'size' of the set.
--
-- > isJust   (lookupIndex 2 (fromList [5,3])) == False
-- > fromJust (lookupIndex 3 (fromList [5,3])) == 0
-- > fromJust (lookupIndex 5 (fromList [5,3])) == 1
-- > isJust   (lookupIndex 6 (fromList [5,3])) == False

-- See Note: Type of local 'go' function
lookupIndex :: Ord a => a -> Set a -> Maybe Int
lookupIndex = go 0
  where
    go :: Ord a => Int -> a -> Set a -> Maybe Int
    STRICT_1_OF_3(go)
    STRICT_2_OF_3(go)
    go _   _ Tip  = Nothing
    go idx x (Bin _ kx l r) = case compare x kx of
      LT -> go idx x l
      GT -> go (idx + size l + 1) x r
      EQ -> Just $! idx + size l
#if __GLASGOW_HASKELL__ >= 700
{-# INLINABLE lookupIndex #-}
#endif

-- | /O(log n)/. Retrieve an element by its /index/, i.e. by its zero-based
-- index in the sorted sequence of elements. If the /index/ is out of range (less
-- than zero, greater or equal to 'size' of the set), 'error' is called.
--
-- > elemAt 0 (fromList [5,3]) == 3
-- > elemAt 1 (fromList [5,3]) == 5
-- > elemAt 2 (fromList [5,3])    Error: index out of range

elemAt :: Int -> Set a -> a
STRICT_1_OF_2(elemAt)
elemAt _ Tip = error "Set.elemAt: index out of range"
elemAt i (Bin _ x l r)
  = case compare i sizeL of
      LT -> elemAt i l
      GT -> elemAt (i-sizeL-1) r
      EQ -> x
  where
    sizeL = size l

-- | /O(log n)/. Delete the element at /index/, i.e. by its zero-based index in
-- the sorted sequence of elements. If the /index/ is out of range (less than zero,
-- greater or equal to 'size' of the set), 'error' is called.
--
-- > deleteAt 0    (fromList [5,3]) == singleton 5
-- > deleteAt 1    (fromList [5,3]) == singleton 3
-- > deleteAt 2    (fromList [5,3])    Error: index out of range
-- > deleteAt (-1) (fromList [5,3])    Error: index out of range

deleteAt :: Int -> Set a -> Set a
deleteAt i t = i `seq`
  case t of
    Tip -> error "Set.deleteAt: index out of range"
    Bin _ x l r -> case compare i sizeL of
      LT -> balanceR x (deleteAt i l) r
      GT -> balanceL x l (deleteAt (i-sizeL-1) r)
      EQ -> glue l r
      where
        sizeL = size l


{--------------------------------------------------------------------
  Utility functions that maintain the balance properties of the tree.
  All constructors assume that all values in [l] < [x] and all values
  in [r] > [x], and that [l] and [r] are valid trees.

  In order of sophistication:
    [Bin sz x l r]    The type constructor.
    [bin x l r]       Maintains the correct size, assumes that both [l]
                      and [r] are balanced with respect to each other.
    [balance x l r]   Restores the balance and size.
                      Assumes that the original tree was balanced and
                      that [l] or [r] has changed by at most one element.
    [link x l r]      Restores balance and size.

  Furthermore, we can construct a new tree from two trees. Both operations
  assume that all values in [l] < all values in [r] and that [l] and [r]
  are valid:
    [glue l r]        Glues [l] and [r] together. Assumes that [l] and
                      [r] are already balanced with respect to each other.
    [merge l r]       Merges two trees and restores balance.

  Note: in contrast to Adam's paper, we use (<=) comparisons instead
  of (<) comparisons in [link], [merge] and [balance].
  Quickcheck (on [difference]) showed that this was necessary in order
  to maintain the invariants. It is quite unsatisfactory that I haven't
  been able to find out why this is actually the case! Fortunately, it
  doesn't hurt to be a bit more conservative.
--------------------------------------------------------------------}

{--------------------------------------------------------------------
  Link
--------------------------------------------------------------------}
link :: a -> Set a -> Set a -> Set a
link x Tip r  = insertMin x r
link x l Tip  = insertMax x l
link x l@(Bin sizeL y ly ry) r@(Bin sizeR z lz rz)
  | delta*sizeL < sizeR  = balanceL z (link x l lz) rz
  | delta*sizeR < sizeL  = balanceR y ly (link x ry r)
  | otherwise            = bin x l r


-- insertMin and insertMax don't perform potentially expensive comparisons.
insertMax,insertMin :: a -> Set a -> Set a
insertMax x t
  = case t of
      Tip -> singleton x
      Bin _ y l r
          -> balanceR y l (insertMax x r)

insertMin x t
  = case t of
      Tip -> singleton x
      Bin _ y l r
          -> balanceL y (insertMin x l) r

{--------------------------------------------------------------------
  [merge l r]: merges two trees.
--------------------------------------------------------------------}
merge :: Set a -> Set a -> Set a
merge Tip r   = r
merge l Tip   = l
merge l@(Bin sizeL x lx rx) r@(Bin sizeR y ly ry)
  | delta*sizeL < sizeR = balanceL y (merge l ly) ry
  | delta*sizeR < sizeL = balanceR x lx (merge rx r)
  | otherwise           = glue l r

{--------------------------------------------------------------------
  [glue l r]: glues two trees together.
  Assumes that [l] and [r] are already balanced with respect to each other.
--------------------------------------------------------------------}
glue :: Set a -> Set a -> Set a
glue Tip r = r
glue l Tip = l
glue l r
  | size l > size r = let (m,l') = deleteFindMax l in balanceR m l' r
  | otherwise       = let (m,r') = deleteFindMin r in balanceL m l r'

-- | /O(log n)/. Delete and find the minimal element.
--
-- > deleteFindMin set = (findMin set, deleteMin set)

deleteFindMin :: Set a -> (a,Set a)
deleteFindMin t
  = case t of
      Bin _ x Tip r -> (x,r)
      Bin _ x l r   -> let (xm,l') = deleteFindMin l in (xm,balanceR x l' r)
      Tip           -> (error "Set.deleteFindMin: can not return the minimal element of an empty set", Tip)

-- | /O(log n)/. Delete and find the maximal element.
--
-- > deleteFindMax set = (findMax set, deleteMax set)
deleteFindMax :: Set a -> (a,Set a)
deleteFindMax t
  = case t of
      Bin _ x l Tip -> (x,l)
      Bin _ x l r   -> let (xm,r') = deleteFindMax r in (xm,balanceL x l r')
      Tip           -> (error "Set.deleteFindMax: can not return the maximal element of an empty set", Tip)

-- | /O(log n)/. Retrieves the minimal key of the set, and the set
-- stripped of that element, or 'Nothing' if passed an empty set.
minView :: Set a -> Maybe (a, Set a)
minView Tip = Nothing
minView x = Just (deleteFindMin x)

-- | /O(log n)/. Retrieves the maximal key of the set, and the set
-- stripped of that element, or 'Nothing' if passed an empty set.
maxView :: Set a -> Maybe (a, Set a)
maxView Tip = Nothing
maxView x = Just (deleteFindMax x)

{--------------------------------------------------------------------
  [balance x l r] balances two trees with value x.
  The sizes of the trees should balance after decreasing the
  size of one of them. (a rotation).

  [delta] is the maximal relative difference between the sizes of
          two trees, it corresponds with the [w] in Adams' paper.
  [ratio] is the ratio between an outer and inner sibling of the
          heavier subtree in an unbalanced setting. It determines
          whether a double or single rotation should be performed
          to restore balance. It is correspondes with the inverse
          of $\alpha$ in Adam's article.

  Note that according to the Adam's paper:
  - [delta] should be larger than 4.646 with a [ratio] of 2.
  - [delta] should be larger than 3.745 with a [ratio] of 1.534.

  But the Adam's paper is errorneous:
  - it can be proved that for delta=2 and delta>=5 there does
    not exist any ratio that would work
  - delta=4.5 and ratio=2 does not work

  That leaves two reasonable variants, delta=3 and delta=4,
  both with ratio=2.

  - A lower [delta] leads to a more 'perfectly' balanced tree.
  - A higher [delta] performs less rebalancing.

  In the benchmarks, delta=3 is faster on insert operations,
  and delta=4 has slightly better deletes. As the insert speedup
  is larger, we currently use delta=3.

--------------------------------------------------------------------}
delta,ratio :: Int
delta = 3
ratio = 2

-- The balance function is equivalent to the following:
--
--   balance :: a -> Set a -> Set a -> Set a
--   balance x l r
--     | sizeL + sizeR <= 1   = Bin sizeX x l r
--     | sizeR > delta*sizeL  = rotateL x l r
--     | sizeL > delta*sizeR  = rotateR x l r
--     | otherwise            = Bin sizeX x l r
--     where
--       sizeL = size l
--       sizeR = size r
--       sizeX = sizeL + sizeR + 1
--
--   rotateL :: a -> Set a -> Set a -> Set a
--   rotateL x l r@(Bin _ _ ly ry) | size ly < ratio*size ry = singleL x l r
--                                 | otherwise               = doubleL x l r
--   rotateR :: a -> Set a -> Set a -> Set a
--   rotateR x l@(Bin _ _ ly ry) r | size ry < ratio*size ly = singleR x l r
--                                 | otherwise               = doubleR x l r
--
--   singleL, singleR :: a -> Set a -> Set a -> Set a
--   singleL x1 t1 (Bin _ x2 t2 t3)  = bin x2 (bin x1 t1 t2) t3
--   singleR x1 (Bin _ x2 t1 t2) t3  = bin x2 t1 (bin x1 t2 t3)
--
--   doubleL, doubleR :: a -> Set a -> Set a -> Set a
--   doubleL x1 t1 (Bin _ x2 (Bin _ x3 t2 t3) t4) = bin x3 (bin x1 t1 t2) (bin x2 t3 t4)
--   doubleR x1 (Bin _ x2 t1 (Bin _ x3 t2 t3)) t4 = bin x3 (bin x2 t1 t2) (bin x1 t3 t4)
--
-- It is only written in such a way that every node is pattern-matched only once.
--
-- Only balanceL and balanceR are needed at the moment, so balance is not here anymore.
-- In case it is needed, it can be found in Data.Map.

-- Functions balanceL and balanceR are specialised versions of balance.
-- balanceL only checks whether the left subtree is too big,
-- balanceR only checks whether the right subtree is too big.

-- balanceL is called when left subtree might have been inserted to or when
-- right subtree might have been deleted from.
balanceL :: a -> Set a -> Set a -> Set a
balanceL x l r = case r of
  Tip -> case l of
           Tip -> Bin 1 x Tip Tip
           (Bin _ _ Tip Tip) -> Bin 2 x l Tip
           (Bin _ lx Tip (Bin _ lrx _ _)) -> Bin 3 lrx (Bin 1 lx Tip Tip) (Bin 1 x Tip Tip)
           (Bin _ lx ll@(Bin _ _ _ _) Tip) -> Bin 3 lx ll (Bin 1 x Tip Tip)
           (Bin ls lx ll@(Bin lls _ _ _) lr@(Bin lrs lrx lrl lrr))
             | lrs < ratio*lls -> Bin (1+ls) lx ll (Bin (1+lrs) x lr Tip)
             | otherwise -> Bin (1+ls) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+size lrr) x lrr Tip)

  (Bin rs _ _ _) -> case l of
           Tip -> Bin (1+rs) x Tip r

           (Bin ls lx ll lr)
              | ls > delta*rs  -> case (ll, lr) of
                   (Bin lls _ _ _, Bin lrs lrx lrl lrr)
                     | lrs < ratio*lls -> Bin (1+ls+rs) lx ll (Bin (1+rs+lrs) x lr r)
                     | otherwise -> Bin (1+ls+rs) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+rs+size lrr) x lrr r)
                   (_, _) -> error "Failure in Data.Map.balanceL"
              | otherwise -> Bin (1+ls+rs) x l r
{-# NOINLINE balanceL #-}

-- balanceR is called when right subtree might have been inserted to or when
-- left subtree might have been deleted from.
balanceR :: a -> Set a -> Set a -> Set a
balanceR x l r = case l of
  Tip -> case r of
           Tip -> Bin 1 x Tip Tip
           (Bin _ _ Tip Tip) -> Bin 2 x Tip r
           (Bin _ rx Tip rr@(Bin _ _ _ _)) -> Bin 3 rx (Bin 1 x Tip Tip) rr
           (Bin _ rx (Bin _ rlx _ _) Tip) -> Bin 3 rlx (Bin 1 x Tip Tip) (Bin 1 rx Tip Tip)
           (Bin rs rx rl@(Bin rls rlx rll rlr) rr@(Bin rrs _ _ _))
             | rls < ratio*rrs -> Bin (1+rs) rx (Bin (1+rls) x Tip rl) rr
             | otherwise -> Bin (1+rs) rlx (Bin (1+size rll) x Tip rll) (Bin (1+rrs+size rlr) rx rlr rr)

  (Bin ls _ _ _) -> case r of
           Tip -> Bin (1+ls) x l Tip

           (Bin rs rx rl rr)
              | rs > delta*ls  -> case (rl, rr) of
                   (Bin rls rlx rll rlr, Bin rrs _ _ _)
                     | rls < ratio*rrs -> Bin (1+ls+rs) rx (Bin (1+ls+rls) x l rl) rr
                     | otherwise -> Bin (1+ls+rs) rlx (Bin (1+ls+size rll) x l rll) (Bin (1+rrs+size rlr) rx rlr rr)
                   (_, _) -> error "Failure in Data.Map.balanceR"
              | otherwise -> Bin (1+ls+rs) x l r
{-# NOINLINE balanceR #-}

{--------------------------------------------------------------------
  The bin constructor maintains the size of the tree
--------------------------------------------------------------------}
bin :: a -> Set a -> Set a -> Set a
bin x l r
  = Bin (size l + size r + 1) x l r
{-# INLINE bin #-}


{--------------------------------------------------------------------
  Utilities
--------------------------------------------------------------------}

-- | /O(1)/.  Decompose a set into pieces based on the structure of the underlying
-- tree.  This function is useful for consuming a set in parallel.
--
-- No guarantee is made as to the sizes of the pieces; an internal, but
-- deterministic process determines this.  However, it is guaranteed that the pieces
-- returned will be in ascending order (all elements in the first subset less than all
-- elements in the second, and so on).
--
-- Examples:
--
-- > splitRoot (fromList [1..6]) ==
-- >   [fromList [1,2,3],fromList [4],fromList [5,6]]
--
-- > splitRoot empty == []
--
--  Note that the current implementation does not return more than three subsets,
--  but you should not depend on this behaviour because it can change in the
--  future without notice.
splitRoot :: Set a -> [Set a]
splitRoot orig =
  case orig of
    Tip           -> []
    Bin _ v l r -> [l, singleton v, r]
{-# INLINE splitRoot #-}


{--------------------------------------------------------------------
  Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the set. The tree is shown
-- in a compressed, hanging format.
showTree :: Show a => Set a -> String
showTree s
  = showTreeWith True False s


{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
 the tree that implements the set. If @hang@ is
 @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
 @wide@ is 'True', an extra wide version is shown.

> Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5]
> 4
> +--2
> |  +--1
> |  +--3
> +--5
>
> Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5]
> 4
> |
> +--2
> |  |
> |  +--1
> |  |
> |  +--3
> |
> +--5
>
> Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1..5]
> +--5
> |
> 4
> |
> |  +--3
> |  |
> +--2
>    |
>    +--1

-}
showTreeWith :: Show a => Bool -> Bool -> Set a -> String
showTreeWith hang wide t
  | hang      = (showsTreeHang wide [] t) ""
  | otherwise = (showsTree wide [] [] t) ""

showsTree :: Show a => Bool -> [String] -> [String] -> Set a -> ShowS
showsTree wide lbars rbars t
  = case t of
      Tip -> showsBars lbars . showString "|\n"
      Bin _ x Tip Tip
          -> showsBars lbars . shows x . showString "\n"
      Bin _ x l r
          -> showsTree wide (withBar rbars) (withEmpty rbars) r .
             showWide wide rbars .
             showsBars lbars . shows x . showString "\n" .
             showWide wide lbars .
             showsTree wide (withEmpty lbars) (withBar lbars) l

showsTreeHang :: Show a => Bool -> [String] -> Set a -> ShowS
showsTreeHang wide bars t
  = case t of
      Tip -> showsBars bars . showString "|\n"
      Bin _ x Tip Tip
          -> showsBars bars . shows x . showString "\n"
      Bin _ x l r
          -> showsBars bars . shows x . showString "\n" .
             showWide wide bars .
             showsTreeHang wide (withBar bars) l .
             showWide wide bars .
             showsTreeHang wide (withEmpty bars) r

showWide :: Bool -> [String] -> String -> String
showWide wide bars
  | wide      = showString (concat (reverse bars)) . showString "|\n"
  | otherwise = id

showsBars :: [String] -> ShowS
showsBars bars
  = case bars of
      [] -> id
      _  -> showString (concat (reverse (tail bars))) . showString node

node :: String
node           = "+--"

withBar, withEmpty :: [String] -> [String]
withBar bars   = "|  ":bars
withEmpty bars = "   ":bars

{--------------------------------------------------------------------
  Assertions
--------------------------------------------------------------------}
-- | /O(n)/. Test if the internal set structure is valid.
valid :: Ord a => Set a -> Bool
valid t
  = balanced t && ordered t && validsize t

ordered :: Ord a => Set a -> Bool
ordered t
  = bounded (const True) (const True) t
  where
    bounded lo hi t'
      = case t' of
          Tip         -> True
          Bin _ x l r -> (lo x) && (hi x) && bounded lo (<x) l && bounded (>x) hi r

balanced :: Set a -> Bool
balanced t
  = case t of
      Tip         -> True
      Bin _ _ l r -> (size l + size r <= 1 || (size l <= delta*size r && size r <= delta*size l)) &&
                     balanced l && balanced r

validsize :: Set a -> Bool
validsize t
  = (realsize t == Just (size t))
  where
    realsize t'
      = case t' of
          Tip          -> Just 0
          Bin sz _ l r -> case (realsize l,realsize r) of
                            (Just n,Just m)  | n+m+1 == sz  -> Just sz
                            _                -> Nothing