1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__
{-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-}
#endif
#if __GLASGOW_HASKELL__ >= 703
{-# LANGUAGE Trustworthy #-}
#endif
#include "containers.h"
-----------------------------------------------------------------------------
-- |
-- Module : Data.Tree
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Multi-way trees (/aka/ rose trees) and forests.
--
-----------------------------------------------------------------------------
module Data.Tree(
Tree(..), Forest,
-- * Two-dimensional drawing
drawTree, drawForest,
-- * Extraction
flatten, levels,
-- * Building trees
unfoldTree, unfoldForest,
unfoldTreeM, unfoldForestM,
unfoldTreeM_BF, unfoldForestM_BF,
) where
#if MIN_VERSION_base(4,8,0)
import Data.Foldable (toList)
#else
import Control.Applicative (Applicative(..), (<$>))
import Data.Foldable (Foldable(foldMap), toList)
import Data.Monoid (Monoid(..))
import Data.Traversable (Traversable(traverse))
#endif
import Control.Monad (liftM)
import Data.Sequence (Seq, empty, singleton, (<|), (|>), fromList,
ViewL(..), ViewR(..), viewl, viewr)
import Data.Typeable
import Control.DeepSeq (NFData(rnf))
#ifdef __GLASGOW_HASKELL__
import Data.Data (Data)
#endif
#if MIN_VERSION_base(4,8,0)
import Data.Coerce
#endif
-- | Multi-way trees, also known as /rose trees/.
data Tree a = Node {
rootLabel :: a, -- ^ label value
subForest :: Forest a -- ^ zero or more child trees
}
#ifdef __GLASGOW_HASKELL__
deriving (Eq, Read, Show, Data)
#else
deriving (Eq, Read, Show)
#endif
type Forest a = [Tree a]
INSTANCE_TYPEABLE1(Tree,treeTc,"Tree")
instance Functor Tree where
fmap = fmapTree
fmapTree :: (a -> b) -> Tree a -> Tree b
fmapTree f (Node x ts) = Node (f x) (map (fmapTree f) ts)
#if MIN_VERSION_base(4,8,0)
-- Safe coercions were introduced in 4.7.0, but I am not sure if they played
-- well enough with RULES to do what we want.
{-# NOINLINE [1] fmapTree #-}
{-# RULES
"fmapTree/coerce" fmapTree coerce = coerce
#-}
#endif
instance Applicative Tree where
pure x = Node x []
Node f tfs <*> tx@(Node x txs) =
Node (f x) (map (f <$>) txs ++ map (<*> tx) tfs)
instance Monad Tree where
return = pure
Node x ts >>= f = Node x' (ts' ++ map (>>= f) ts)
where Node x' ts' = f x
instance Traversable Tree where
traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts
instance Foldable Tree where
foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts
#if MIN_VERSION_base(4,8,0)
null _ = False
{-# INLINE null #-}
toList = flatten
{-# INLINE toList #-}
#endif
instance NFData a => NFData (Tree a) where
rnf (Node x ts) = rnf x `seq` rnf ts
-- | Neat 2-dimensional drawing of a tree.
drawTree :: Tree String -> String
drawTree = unlines . draw
-- | Neat 2-dimensional drawing of a forest.
drawForest :: Forest String -> String
drawForest = unlines . map drawTree
draw :: Tree String -> [String]
draw (Node x ts0) = x : drawSubTrees ts0
where
drawSubTrees [] = []
drawSubTrees [t] =
"|" : shift "`- " " " (draw t)
drawSubTrees (t:ts) =
"|" : shift "+- " "| " (draw t) ++ drawSubTrees ts
shift first other = zipWith (++) (first : repeat other)
-- | The elements of a tree in pre-order.
flatten :: Tree a -> [a]
flatten t = squish t []
where squish (Node x ts) xs = x:Prelude.foldr squish xs ts
-- | Lists of nodes at each level of the tree.
levels :: Tree a -> [[a]]
levels t =
map (map rootLabel) $
takeWhile (not . null) $
iterate (concatMap subForest) [t]
-- | Build a tree from a seed value
unfoldTree :: (b -> (a, [b])) -> b -> Tree a
unfoldTree f b = let (a, bs) = f b in Node a (unfoldForest f bs)
-- | Build a forest from a list of seed values
unfoldForest :: (b -> (a, [b])) -> [b] -> Forest a
unfoldForest f = map (unfoldTree f)
-- | Monadic tree builder, in depth-first order
unfoldTreeM :: Monad m => (b -> m (a, [b])) -> b -> m (Tree a)
unfoldTreeM f b = do
(a, bs) <- f b
ts <- unfoldForestM f bs
return (Node a ts)
-- | Monadic forest builder, in depth-first order
#ifndef __NHC__
unfoldForestM :: Monad m => (b -> m (a, [b])) -> [b] -> m (Forest a)
#endif
unfoldForestM f = Prelude.mapM (unfoldTreeM f)
-- | Monadic tree builder, in breadth-first order,
-- using an algorithm adapted from
-- /Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design/,
-- by Chris Okasaki, /ICFP'00/.
unfoldTreeM_BF :: Monad m => (b -> m (a, [b])) -> b -> m (Tree a)
unfoldTreeM_BF f b = liftM getElement $ unfoldForestQ f (singleton b)
where
getElement xs = case viewl xs of
x :< _ -> x
EmptyL -> error "unfoldTreeM_BF"
-- | Monadic forest builder, in breadth-first order,
-- using an algorithm adapted from
-- /Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design/,
-- by Chris Okasaki, /ICFP'00/.
unfoldForestM_BF :: Monad m => (b -> m (a, [b])) -> [b] -> m (Forest a)
unfoldForestM_BF f = liftM toList . unfoldForestQ f . fromList
-- takes a sequence (queue) of seeds
-- produces a sequence (reversed queue) of trees of the same length
unfoldForestQ :: Monad m => (b -> m (a, [b])) -> Seq b -> m (Seq (Tree a))
unfoldForestQ f aQ = case viewl aQ of
EmptyL -> return empty
a :< aQ' -> do
(b, as) <- f a
tQ <- unfoldForestQ f (Prelude.foldl (|>) aQ' as)
let (tQ', ts) = splitOnto [] as tQ
return (Node b ts <| tQ')
where
splitOnto :: [a'] -> [b'] -> Seq a' -> (Seq a', [a'])
splitOnto as [] q = (q, as)
splitOnto as (_:bs) q = case viewr q of
q' :> a -> splitOnto (a:as) bs q'
EmptyR -> error "unfoldForestQ"
|