1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
-- | Basic operations on graphs.
--
module GraphOps (
addNode, delNode, getNode, lookupNode, modNode,
size,
union,
addConflict, delConflict, addConflicts,
addCoalesce, delCoalesce,
addExclusion, addExclusions,
addPreference,
coalesceNodes, coalesceGraph,
freezeNode, freezeOneInGraph, freezeAllInGraph,
scanGraph,
setColor,
validateGraph,
slurpNodeConflictCount
)
where
import GhcPrelude
import GraphBase
import Outputable
import Unique
import UniqSet
import UniqFM
import Data.List hiding (union)
import Data.Maybe
-- | Lookup a node from the graph.
lookupNode
:: Uniquable k
=> Graph k cls color
-> k -> Maybe (Node k cls color)
lookupNode graph k
= lookupUFM (graphMap graph) k
-- | Get a node from the graph, throwing an error if it's not there
getNode
:: Uniquable k
=> Graph k cls color
-> k -> Node k cls color
getNode graph k
= case lookupUFM (graphMap graph) k of
Just node -> node
Nothing -> panic "ColorOps.getNode: not found"
-- | Add a node to the graph, linking up its edges
addNode :: Uniquable k
=> k -> Node k cls color
-> Graph k cls color -> Graph k cls color
addNode k node graph
= let
-- add back conflict edges from other nodes to this one
map_conflict =
nonDetFoldUniqSet
-- It's OK to use nonDetFoldUFM here because the
-- operation is commutative
(adjustUFM_C (\n -> n { nodeConflicts =
addOneToUniqSet (nodeConflicts n) k}))
(graphMap graph)
(nodeConflicts node)
-- add back coalesce edges from other nodes to this one
map_coalesce =
nonDetFoldUniqSet
-- It's OK to use nonDetFoldUFM here because the
-- operation is commutative
(adjustUFM_C (\n -> n { nodeCoalesce =
addOneToUniqSet (nodeCoalesce n) k}))
map_conflict
(nodeCoalesce node)
in graph
{ graphMap = addToUFM map_coalesce k node}
-- | Delete a node and all its edges from the graph.
delNode :: (Uniquable k)
=> k -> Graph k cls color -> Maybe (Graph k cls color)
delNode k graph
| Just node <- lookupNode graph k
= let -- delete conflict edges from other nodes to this one.
graph1 = foldl' (\g k1 -> let Just g' = delConflict k1 k g in g') graph
$ nonDetEltsUniqSet (nodeConflicts node)
-- delete coalesce edge from other nodes to this one.
graph2 = foldl' (\g k1 -> let Just g' = delCoalesce k1 k g in g') graph1
$ nonDetEltsUniqSet (nodeCoalesce node)
-- See Note [Unique Determinism and code generation]
-- delete the node
graph3 = graphMapModify (\fm -> delFromUFM fm k) graph2
in Just graph3
| otherwise
= Nothing
-- | Modify a node in the graph.
-- returns Nothing if the node isn't present.
--
modNode :: Uniquable k
=> (Node k cls color -> Node k cls color)
-> k -> Graph k cls color -> Maybe (Graph k cls color)
modNode f k graph
= case lookupNode graph k of
Just Node{}
-> Just
$ graphMapModify
(\fm -> let Just node = lookupUFM fm k
node' = f node
in addToUFM fm k node')
graph
Nothing -> Nothing
-- | Get the size of the graph, O(n)
size :: Graph k cls color -> Int
size graph
= sizeUFM $ graphMap graph
-- | Union two graphs together.
union :: Graph k cls color -> Graph k cls color -> Graph k cls color
union graph1 graph2
= Graph
{ graphMap = plusUFM (graphMap graph1) (graphMap graph2) }
-- | Add a conflict between nodes to the graph, creating the nodes required.
-- Conflicts are virtual regs which need to be colored differently.
addConflict
:: Uniquable k
=> (k, cls) -> (k, cls)
-> Graph k cls color -> Graph k cls color
addConflict (u1, c1) (u2, c2)
= let addNeighbor u c u'
= adjustWithDefaultUFM
(\node -> node { nodeConflicts = addOneToUniqSet (nodeConflicts node) u' })
(newNode u c) { nodeConflicts = unitUniqSet u' }
u
in graphMapModify
( addNeighbor u1 c1 u2
. addNeighbor u2 c2 u1)
-- | Delete a conflict edge. k1 -> k2
-- returns Nothing if the node isn't in the graph
delConflict
:: Uniquable k
=> k -> k
-> Graph k cls color -> Maybe (Graph k cls color)
delConflict k1 k2
= modNode
(\node -> node { nodeConflicts = delOneFromUniqSet (nodeConflicts node) k2 })
k1
-- | Add some conflicts to the graph, creating nodes if required.
-- All the nodes in the set are taken to conflict with each other.
addConflicts
:: Uniquable k
=> UniqSet k -> (k -> cls)
-> Graph k cls color -> Graph k cls color
addConflicts conflicts getClass
-- just a single node, but no conflicts, create the node anyway.
| (u : []) <- nonDetEltsUniqSet conflicts
= graphMapModify
$ adjustWithDefaultUFM
id
(newNode u (getClass u))
u
| otherwise
= graphMapModify
$ \fm -> foldl' (\g u -> addConflictSet1 u getClass conflicts g) fm
$ nonDetEltsUniqSet conflicts
-- See Note [Unique Determinism and code generation]
addConflictSet1 :: Uniquable k
=> k -> (k -> cls) -> UniqSet k
-> UniqFM (Node k cls color)
-> UniqFM (Node k cls color)
addConflictSet1 u getClass set
= case delOneFromUniqSet set u of
set' -> adjustWithDefaultUFM
(\node -> node { nodeConflicts = unionUniqSets set' (nodeConflicts node) } )
(newNode u (getClass u)) { nodeConflicts = set' }
u
-- | Add an exclusion to the graph, creating nodes if required.
-- These are extra colors that the node cannot use.
addExclusion
:: (Uniquable k, Uniquable color)
=> k -> (k -> cls) -> color
-> Graph k cls color -> Graph k cls color
addExclusion u getClass color
= graphMapModify
$ adjustWithDefaultUFM
(\node -> node { nodeExclusions = addOneToUniqSet (nodeExclusions node) color })
(newNode u (getClass u)) { nodeExclusions = unitUniqSet color }
u
addExclusions
:: (Uniquable k, Uniquable color)
=> k -> (k -> cls) -> [color]
-> Graph k cls color -> Graph k cls color
addExclusions u getClass colors graph
= foldr (addExclusion u getClass) graph colors
-- | Add a coalescence edge to the graph, creating nodes if requried.
-- It is considered adventageous to assign the same color to nodes in a coalesence.
addCoalesce
:: Uniquable k
=> (k, cls) -> (k, cls)
-> Graph k cls color -> Graph k cls color
addCoalesce (u1, c1) (u2, c2)
= let addCoalesce u c u'
= adjustWithDefaultUFM
(\node -> node { nodeCoalesce = addOneToUniqSet (nodeCoalesce node) u' })
(newNode u c) { nodeCoalesce = unitUniqSet u' }
u
in graphMapModify
( addCoalesce u1 c1 u2
. addCoalesce u2 c2 u1)
-- | Delete a coalescence edge (k1 -> k2) from the graph.
delCoalesce
:: Uniquable k
=> k -> k
-> Graph k cls color -> Maybe (Graph k cls color)
delCoalesce k1 k2
= modNode (\node -> node { nodeCoalesce = delOneFromUniqSet (nodeCoalesce node) k2 })
k1
-- | Add a color preference to the graph, creating nodes if required.
-- The most recently added preference is the most prefered.
-- The algorithm tries to assign a node it's prefered color if possible.
--
addPreference
:: Uniquable k
=> (k, cls) -> color
-> Graph k cls color -> Graph k cls color
addPreference (u, c) color
= graphMapModify
$ adjustWithDefaultUFM
(\node -> node { nodePreference = color : (nodePreference node) })
(newNode u c) { nodePreference = [color] }
u
-- | Do aggressive coalescing on this graph.
-- returns the new graph and the list of pairs of nodes that got coalesced together.
-- for each pair, the resulting node will have the least key and be second in the pair.
--
coalesceGraph
:: (Uniquable k, Ord k, Eq cls, Outputable k)
=> Bool -- ^ If True, coalesce nodes even if this might make the graph
-- less colorable (aggressive coalescing)
-> Triv k cls color
-> Graph k cls color
-> ( Graph k cls color
, [(k, k)]) -- pairs of nodes that were coalesced, in the order that the
-- coalescing was applied.
coalesceGraph aggressive triv graph
= coalesceGraph' aggressive triv graph []
coalesceGraph'
:: (Uniquable k, Ord k, Eq cls, Outputable k)
=> Bool
-> Triv k cls color
-> Graph k cls color
-> [(k, k)]
-> ( Graph k cls color
, [(k, k)])
coalesceGraph' aggressive triv graph kkPairsAcc
= let
-- find all the nodes that have coalescence edges
cNodes = filter (\node -> not $ isEmptyUniqSet (nodeCoalesce node))
$ nonDetEltsUFM $ graphMap graph
-- See Note [Unique Determinism and code generation]
-- build a list of pairs of keys for node's we'll try and coalesce
-- every pair of nodes will appear twice in this list
-- ie [(k1, k2), (k2, k1) ... ]
-- This is ok, GrapOps.coalesceNodes handles this and it's convenient for
-- build a list of what nodes get coalesced together for later on.
--
cList = [ (nodeId node1, k2)
| node1 <- cNodes
, k2 <- nonDetEltsUniqSet $ nodeCoalesce node1 ]
-- See Note [Unique Determinism and code generation]
-- do the coalescing, returning the new graph and a list of pairs of keys
-- that got coalesced together.
(graph', mPairs)
= mapAccumL (coalesceNodes aggressive triv) graph cList
-- keep running until there are no more coalesces can be found
in case catMaybes mPairs of
[] -> (graph', reverse kkPairsAcc)
pairs -> coalesceGraph' aggressive triv graph' (reverse pairs ++ kkPairsAcc)
-- | Coalesce this pair of nodes unconditionally \/ aggressively.
-- The resulting node is the one with the least key.
--
-- returns: Just the pair of keys if the nodes were coalesced
-- the second element of the pair being the least one
--
-- Nothing if either of the nodes weren't in the graph
coalesceNodes
:: (Uniquable k, Ord k, Eq cls)
=> Bool -- ^ If True, coalesce nodes even if this might make the graph
-- less colorable (aggressive coalescing)
-> Triv k cls color
-> Graph k cls color
-> (k, k) -- ^ keys of the nodes to be coalesced
-> (Graph k cls color, Maybe (k, k))
coalesceNodes aggressive triv graph (k1, k2)
| (kMin, kMax) <- if k1 < k2
then (k1, k2)
else (k2, k1)
-- the nodes being coalesced must be in the graph
, Just nMin <- lookupNode graph kMin
, Just nMax <- lookupNode graph kMax
-- can't coalesce conflicting modes
, not $ elementOfUniqSet kMin (nodeConflicts nMax)
, not $ elementOfUniqSet kMax (nodeConflicts nMin)
-- can't coalesce the same node
, nodeId nMin /= nodeId nMax
= coalesceNodes_merge aggressive triv graph kMin kMax nMin nMax
-- don't do the coalescing after all
| otherwise
= (graph, Nothing)
coalesceNodes_merge
:: (Uniquable k, Eq cls)
=> Bool
-> Triv k cls color
-> Graph k cls color
-> k -> k
-> Node k cls color
-> Node k cls color
-> (Graph k cls color, Maybe (k, k))
coalesceNodes_merge aggressive triv graph kMin kMax nMin nMax
-- sanity checks
| nodeClass nMin /= nodeClass nMax
= error "GraphOps.coalesceNodes: can't coalesce nodes of different classes."
| not (isNothing (nodeColor nMin) && isNothing (nodeColor nMax))
= error "GraphOps.coalesceNodes: can't coalesce colored nodes."
---
| otherwise
= let
-- the new node gets all the edges from its two components
node =
Node { nodeId = kMin
, nodeClass = nodeClass nMin
, nodeColor = Nothing
-- nodes don't conflict with themselves..
, nodeConflicts
= (unionUniqSets (nodeConflicts nMin) (nodeConflicts nMax))
`delOneFromUniqSet` kMin
`delOneFromUniqSet` kMax
, nodeExclusions = unionUniqSets (nodeExclusions nMin) (nodeExclusions nMax)
, nodePreference = nodePreference nMin ++ nodePreference nMax
-- nodes don't coalesce with themselves..
, nodeCoalesce
= (unionUniqSets (nodeCoalesce nMin) (nodeCoalesce nMax))
`delOneFromUniqSet` kMin
`delOneFromUniqSet` kMax
}
in coalesceNodes_check aggressive triv graph kMin kMax node
coalesceNodes_check
:: Uniquable k
=> Bool
-> Triv k cls color
-> Graph k cls color
-> k -> k
-> Node k cls color
-> (Graph k cls color, Maybe (k, k))
coalesceNodes_check aggressive triv graph kMin kMax node
-- Unless we're coalescing aggressively, if the result node is not trivially
-- colorable then don't do the coalescing.
| not aggressive
, not $ triv (nodeClass node) (nodeConflicts node) (nodeExclusions node)
= (graph, Nothing)
| otherwise
= let -- delete the old nodes from the graph and add the new one
Just graph1 = delNode kMax graph
Just graph2 = delNode kMin graph1
graph3 = addNode kMin node graph2
in (graph3, Just (kMax, kMin))
-- | Freeze a node
-- This is for the iterative coalescer.
-- By freezing a node we give up on ever coalescing it.
-- Move all its coalesce edges into the frozen set - and update
-- back edges from other nodes.
--
freezeNode
:: Uniquable k
=> k -- ^ key of the node to freeze
-> Graph k cls color -- ^ the graph
-> Graph k cls color -- ^ graph with that node frozen
freezeNode k
= graphMapModify
$ \fm ->
let -- freeze all the edges in the node to be frozen
Just node = lookupUFM fm k
node' = node
{ nodeCoalesce = emptyUniqSet }
fm1 = addToUFM fm k node'
-- update back edges pointing to this node
freezeEdge k node
= if elementOfUniqSet k (nodeCoalesce node)
then node { nodeCoalesce = delOneFromUniqSet (nodeCoalesce node) k }
else node -- panic "GraphOps.freezeNode: edge to freeze wasn't in the coalesce set"
-- If the edge isn't actually in the coelesce set then just ignore it.
fm2 = nonDetFoldUniqSet (adjustUFM_C (freezeEdge k)) fm1
-- It's OK to use nonDetFoldUFM here because the operation
-- is commutative
$ nodeCoalesce node
in fm2
-- | Freeze one node in the graph
-- This if for the iterative coalescer.
-- Look for a move related node of low degree and freeze it.
--
-- We probably don't need to scan the whole graph looking for the node of absolute
-- lowest degree. Just sample the first few and choose the one with the lowest
-- degree out of those. Also, we don't make any distinction between conflicts of different
-- classes.. this is just a heuristic, after all.
--
-- IDEA: freezing a node might free it up for Simplify.. would be good to check for triv
-- right here, and add it to a worklist if known triv\/non-move nodes.
--
freezeOneInGraph
:: (Uniquable k)
=> Graph k cls color
-> ( Graph k cls color -- the new graph
, Bool ) -- whether we found a node to freeze
freezeOneInGraph graph
= let compareNodeDegree n1 n2
= compare (sizeUniqSet $ nodeConflicts n1) (sizeUniqSet $ nodeConflicts n2)
candidates
= sortBy compareNodeDegree
$ take 5 -- 5 isn't special, it's just a small number.
$ scanGraph (\node -> not $ isEmptyUniqSet (nodeCoalesce node)) graph
in case candidates of
-- there wasn't anything available to freeze
[] -> (graph, False)
-- we found something to freeze
(n : _)
-> ( freezeNode (nodeId n) graph
, True)
-- | Freeze all the nodes in the graph
-- for debugging the iterative allocator.
--
freezeAllInGraph
:: (Uniquable k)
=> Graph k cls color
-> Graph k cls color
freezeAllInGraph graph
= foldr freezeNode graph
$ map nodeId
$ nonDetEltsUFM $ graphMap graph
-- See Note [Unique Determinism and code generation]
-- | Find all the nodes in the graph that meet some criteria
--
scanGraph
:: (Node k cls color -> Bool)
-> Graph k cls color
-> [Node k cls color]
scanGraph match graph
= filter match $ nonDetEltsUFM $ graphMap graph
-- See Note [Unique Determinism and code generation]
-- | validate the internal structure of a graph
-- all its edges should point to valid nodes
-- If they don't then throw an error
--
validateGraph
:: (Uniquable k, Outputable k, Eq color)
=> SDoc -- ^ extra debugging info to display on error
-> Bool -- ^ whether this graph is supposed to be colored.
-> Graph k cls color -- ^ graph to validate
-> Graph k cls color -- ^ validated graph
validateGraph doc isColored graph
-- Check that all edges point to valid nodes.
| edges <- unionManyUniqSets
( (map nodeConflicts $ nonDetEltsUFM $ graphMap graph)
++ (map nodeCoalesce $ nonDetEltsUFM $ graphMap graph))
, nodes <- mkUniqSet $ map nodeId $ nonDetEltsUFM $ graphMap graph
, badEdges <- minusUniqSet edges nodes
, not $ isEmptyUniqSet badEdges
= pprPanic "GraphOps.validateGraph"
( text "Graph has edges that point to non-existent nodes"
$$ text " bad edges: " <> pprUFM (getUniqSet badEdges) (vcat . map ppr)
$$ doc )
-- Check that no conflicting nodes have the same color
| badNodes <- filter (not . (checkNode graph))
$ nonDetEltsUFM $ graphMap graph
-- See Note [Unique Determinism and code generation]
, not $ null badNodes
= pprPanic "GraphOps.validateGraph"
( text "Node has same color as one of it's conflicts"
$$ text " bad nodes: " <> hcat (map (ppr . nodeId) badNodes)
$$ doc)
-- If this is supposed to be a colored graph,
-- check that all nodes have a color.
| isColored
, badNodes <- filter (\n -> isNothing $ nodeColor n)
$ nonDetEltsUFM $ graphMap graph
, not $ null badNodes
= pprPanic "GraphOps.validateGraph"
( text "Supposably colored graph has uncolored nodes."
$$ text " uncolored nodes: " <> hcat (map (ppr . nodeId) badNodes)
$$ doc )
-- graph looks ok
| otherwise
= graph
-- | If this node is colored, check that all the nodes which
-- conflict with it have different colors.
checkNode
:: (Uniquable k, Eq color)
=> Graph k cls color
-> Node k cls color
-> Bool -- ^ True if this node is ok
checkNode graph node
| Just color <- nodeColor node
, Just neighbors <- sequence $ map (lookupNode graph)
$ nonDetEltsUniqSet $ nodeConflicts node
-- See Note [Unique Determinism and code generation]
, neighbourColors <- catMaybes $ map nodeColor neighbors
, elem color neighbourColors
= False
| otherwise
= True
-- | Slurp out a map of how many nodes had a certain number of conflict neighbours
slurpNodeConflictCount
:: Graph k cls color
-> UniqFM (Int, Int) -- ^ (conflict neighbours, num nodes with that many conflicts)
slurpNodeConflictCount graph
= addListToUFM_C
(\(c1, n1) (_, n2) -> (c1, n1 + n2))
emptyUFM
$ map (\node
-> let count = sizeUniqSet $ nodeConflicts node
in (count, (count, 1)))
$ nonDetEltsUFM
-- See Note [Unique Determinism and code generation]
$ graphMap graph
-- | Set the color of a certain node
setColor
:: Uniquable k
=> k -> color
-> Graph k cls color -> Graph k cls color
setColor u color
= graphMapModify
$ adjustUFM_C
(\n -> n { nodeColor = Just color })
u
{-# INLINE adjustWithDefaultUFM #-}
adjustWithDefaultUFM
:: Uniquable k
=> (a -> a) -> a -> k
-> UniqFM a -> UniqFM a
adjustWithDefaultUFM f def k map
= addToUFM_C
(\old _ -> f old)
map
k def
-- Argument order different from UniqFM's adjustUFM
{-# INLINE adjustUFM_C #-}
adjustUFM_C
:: Uniquable k
=> (a -> a)
-> k -> UniqFM a -> UniqFM a
adjustUFM_C f k map
= case lookupUFM map k of
Nothing -> map
Just a -> addToUFM map k (f a)
|