1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
|
{-# LANGUAGE
BangPatterns
, CPP
, RankNTypes
, MagicHash
, UnboxedTuples
, MultiParamTypeClasses
, FlexibleInstances
, FlexibleContexts
, UnliftedFFITypes
, RoleAnnotations
#-}
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Array.Base
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (MPTCs, uses Control.Monad.ST)
--
-- Basis for IArray and MArray. Not intended for external consumption;
-- use IArray or MArray instead.
--
-----------------------------------------------------------------------------
module Data.Array.Base where
import Control.Monad.ST.Lazy ( strictToLazyST )
import qualified Control.Monad.ST.Lazy as Lazy (ST)
import Data.Ix ( Ix, range, index, rangeSize )
import Foreign.C.Types
import Foreign.StablePtr
import Data.Char
import GHC.Arr ( STArray )
import qualified GHC.Arr as Arr
import qualified GHC.Arr as ArrST
import GHC.ST ( ST(..), runST )
import GHC.Base ( IO(..), divInt# )
import GHC.Exts
import GHC.Ptr ( nullPtr, nullFunPtr )
import GHC.Show ( appPrec )
import GHC.Stable ( StablePtr(..) )
import GHC.Read ( expectP, parens, Read(..) )
import GHC.Int ( Int8(..), Int16(..), Int32(..), Int64(..) )
import GHC.Word ( Word8(..), Word16(..), Word32(..), Word64(..) )
import GHC.IO ( stToIO )
import GHC.IOArray ( IOArray(..),
newIOArray, unsafeReadIOArray, unsafeWriteIOArray )
import Text.Read.Lex ( Lexeme(Ident) )
import Text.ParserCombinators.ReadPrec ( prec, ReadPrec, step )
#include "MachDeps.h"
-----------------------------------------------------------------------------
-- Class of immutable arrays
{- | Class of immutable array types.
An array type has the form @(a i e)@ where @a@ is the array type
constructor (kind @* -> * -> *@), @i@ is the index type (a member of
the class 'Ix'), and @e@ is the element type. The @IArray@ class is
parameterised over both @a@ and @e@, so that instances specialised to
certain element types can be defined.
-}
class IArray a e where
-- | Extracts the bounds of an immutable array
bounds :: Ix i => a i e -> (i,i)
numElements :: Ix i => a i e -> Int
unsafeArray :: Ix i => (i,i) -> [(Int, e)] -> a i e
unsafeAt :: Ix i => a i e -> Int -> e
unsafeReplace :: Ix i => a i e -> [(Int, e)] -> a i e
unsafeAccum :: Ix i => (e -> e' -> e) -> a i e -> [(Int, e')] -> a i e
unsafeAccumArray :: Ix i => (e -> e' -> e) -> e -> (i,i) -> [(Int, e')] -> a i e
unsafeReplace arr ies = runST (unsafeReplaceST arr ies >>= unsafeFreeze)
unsafeAccum f arr ies = runST (unsafeAccumST f arr ies >>= unsafeFreeze)
unsafeAccumArray f e lu ies = runST (unsafeAccumArrayST f e lu ies >>= unsafeFreeze)
{-# INLINE safeRangeSize #-}
safeRangeSize :: Ix i => (i, i) -> Int
safeRangeSize (l,u) = let r = rangeSize (l, u)
in if r < 0 then error "Negative range size"
else r
{-# INLINE safeIndex #-}
safeIndex :: Ix i => (i, i) -> Int -> i -> Int
safeIndex (l,u) n i = let i' = index (l,u) i
in if (0 <= i') && (i' < n)
then i'
else error ("Error in array index; " ++ show i' ++
" not in range [0.." ++ show n ++ ")")
{-# INLINE unsafeReplaceST #-}
unsafeReplaceST :: (IArray a e, Ix i) => a i e -> [(Int, e)] -> ST s (STArray s i e)
unsafeReplaceST arr ies = do
marr <- thaw arr
sequence_ [unsafeWrite marr i e | (i, e) <- ies]
return marr
{-# INLINE unsafeAccumST #-}
unsafeAccumST :: (IArray a e, Ix i) => (e -> e' -> e) -> a i e -> [(Int, e')] -> ST s (STArray s i e)
unsafeAccumST f arr ies = do
marr <- thaw arr
sequence_ [do old <- unsafeRead marr i
unsafeWrite marr i (f old new)
| (i, new) <- ies]
return marr
{-# INLINE unsafeAccumArrayST #-}
unsafeAccumArrayST :: Ix i => (e -> e' -> e) -> e -> (i,i) -> [(Int, e')] -> ST s (STArray s i e)
unsafeAccumArrayST f e (l,u) ies = do
marr <- newArray (l,u) e
sequence_ [do old <- unsafeRead marr i
unsafeWrite marr i (f old new)
| (i, new) <- ies]
return marr
{-# INLINE array #-}
{-| Constructs an immutable array from a pair of bounds and a list of
initial associations.
The bounds are specified as a pair of the lowest and highest bounds in
the array respectively. For example, a one-origin vector of length 10
has bounds (1,10), and a one-origin 10 by 10 matrix has bounds
((1,1),(10,10)).
An association is a pair of the form @(i,x)@, which defines the value of
the array at index @i@ to be @x@. The array is undefined if any index
in the list is out of bounds. If any two associations in the list have
the same index, the value at that index is implementation-dependent.
(In GHC, the last value specified for that index is used.
Other implementations will also do this for unboxed arrays, but Haskell
98 requires that for 'Array' the value at such indices is bottom.)
Because the indices must be checked for these errors, 'array' is
strict in the bounds argument and in the indices of the association
list. Whether @array@ is strict or non-strict in the elements depends
on the array type: 'Data.Array.Array' is a non-strict array type, but
all of the 'Data.Array.Unboxed.UArray' arrays are strict. Thus in a
non-strict array, recurrences such as the following are possible:
> a = array (1,100) ((1,1) : [(i, i * a!(i-1)) | i \<- [2..100]])
Not every index within the bounds of the array need appear in the
association list, but the values associated with indices that do not
appear will be undefined.
If, in any dimension, the lower bound is greater than the upper bound,
then the array is legal, but empty. Indexing an empty array always
gives an array-bounds error, but 'bounds' still yields the bounds with
which the array was constructed.
-}
array :: (IArray a e, Ix i)
=> (i,i) -- ^ bounds of the array: (lowest,highest)
-> [(i, e)] -- ^ list of associations
-> a i e
array (l,u) ies
= let n = safeRangeSize (l,u)
in unsafeArray (l,u)
[(safeIndex (l,u) n i, e) | (i, e) <- ies]
-- Since unsafeFreeze is not guaranteed to be only a cast, we will
-- use unsafeArray and zip instead of a specialized loop to implement
-- listArray, unlike Array.listArray, even though it generates some
-- unnecessary heap allocation. Will use the loop only when we have
-- fast unsafeFreeze, namely for Array and UArray (well, they cover
-- almost all cases).
{-# INLINE [1] listArray #-}
-- | Constructs an immutable array from a list of initial elements.
-- The list gives the elements of the array in ascending order
-- beginning with the lowest index.
listArray :: (IArray a e, Ix i) => (i,i) -> [e] -> a i e
listArray (l,u) es =
let n = safeRangeSize (l,u)
in unsafeArray (l,u) (zip [0 .. n - 1] es)
{-# INLINE listArrayST #-}
listArrayST :: Ix i => (i,i) -> [e] -> ST s (STArray s i e)
listArrayST (l,u) es = do
marr <- newArray_ (l,u)
let n = safeRangeSize (l,u)
let fillFromList i xs | i == n = return ()
| otherwise = case xs of
[] -> return ()
y:ys -> unsafeWrite marr i y >> fillFromList (i+1) ys
fillFromList 0 es
return marr
{-# RULES
"listArray/Array" listArray =
\lu es -> runST (listArrayST lu es >>= ArrST.unsafeFreezeSTArray)
#-}
{-# INLINE listUArrayST #-}
listUArrayST :: (MArray (STUArray s) e (ST s), Ix i)
=> (i,i) -> [e] -> ST s (STUArray s i e)
listUArrayST (l,u) es = do
marr <- newArray_ (l,u)
let n = safeRangeSize (l,u)
let fillFromList i xs | i == n = return ()
| otherwise = case xs of
[] -> return ()
y:ys -> unsafeWrite marr i y >> fillFromList (i+1) ys
fillFromList 0 es
return marr
-- I don't know how to write a single rule for listUArrayST, because
-- the type looks like constrained over 's', which runST doesn't
-- like. In fact all MArray (STUArray s) instances are polymorphic
-- wrt. 's', but runST can't know that.
--
-- More precisely, we'd like to write this:
-- listUArray :: (forall s. MArray (STUArray s) e (ST s), Ix i)
-- => (i,i) -> [e] -> UArray i e
-- listUArray lu = runST (listUArrayST lu es >>= unsafeFreezeSTUArray)
-- {-# RULES listArray = listUArray
-- Then we could call listUArray at any type 'e' that had a suitable
-- MArray instance. But sadly we can't, because we don't have quantified
-- constraints. Hence the mass of rules below.
-- I would like also to write a rule for listUArrayST (or listArray or
-- whatever) applied to unpackCString#. Unfortunately unpackCString#
-- calls seem to be floated out, then floated back into the middle
-- of listUArrayST, so I was not able to do this.
type ListUArray e = forall i . Ix i => (i,i) -> [e] -> UArray i e
{-# RULES
"listArray/UArray/Bool" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Bool
"listArray/UArray/Char" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Char
"listArray/UArray/Int" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Int
"listArray/UArray/Word" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Word
"listArray/UArray/Ptr" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray (Ptr a)
"listArray/UArray/FunPtr" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray (FunPtr a)
"listArray/UArray/Float" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Float
"listArray/UArray/Double" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Double
"listArray/UArray/StablePtr" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray (StablePtr a)
"listArray/UArray/Int8" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Int8
"listArray/UArray/Int16" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Int16
"listArray/UArray/Int32" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Int32
"listArray/UArray/Int64" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Int64
"listArray/UArray/Word8" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Word8
"listArray/UArray/Word16" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Word16
"listArray/UArray/Word32" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Word32
"listArray/UArray/Word64" listArray
= (\lu es -> runST (listUArrayST lu es >>= unsafeFreezeSTUArray)) :: ListUArray Word64
#-}
{-# INLINE (!) #-}
-- | Returns the element of an immutable array at the specified index.
(!) :: (IArray a e, Ix i) => a i e -> i -> e
(!) arr i = case bounds arr of
(l,u) -> unsafeAt arr $ safeIndex (l,u) (numElements arr) i
{-# INLINE indices #-}
-- | Returns a list of all the valid indices in an array.
indices :: (IArray a e, Ix i) => a i e -> [i]
indices arr = case bounds arr of (l,u) -> range (l,u)
{-# INLINE elems #-}
-- | Returns a list of all the elements of an array, in the same order
-- as their indices.
elems :: (IArray a e, Ix i) => a i e -> [e]
elems arr = [unsafeAt arr i | i <- [0 .. numElements arr - 1]]
{-# INLINE assocs #-}
-- | Returns the contents of an array as a list of associations.
assocs :: (IArray a e, Ix i) => a i e -> [(i, e)]
assocs arr = case bounds arr of
(l,u) -> [(i, arr ! i) | i <- range (l,u)]
{-# INLINE accumArray #-}
{-|
Constructs an immutable array from a list of associations. Unlike
'array', the same index is allowed to occur multiple times in the list
of associations; an /accumulating function/ is used to combine the
values of elements with the same index.
For example, given a list of values of some index type, hist produces
a histogram of the number of occurrences of each index within a
specified range:
> hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
> hist bnds is = accumArray (+) 0 bnds [(i, 1) | i\<-is, inRange bnds i]
-}
accumArray :: (IArray a e, Ix i)
=> (e -> e' -> e) -- ^ An accumulating function
-> e -- ^ A default element
-> (i,i) -- ^ The bounds of the array
-> [(i, e')] -- ^ List of associations
-> a i e -- ^ Returns: the array
accumArray f initialValue (l,u) ies =
let n = safeRangeSize (l, u)
in unsafeAccumArray f initialValue (l,u)
[(safeIndex (l,u) n i, e) | (i, e) <- ies]
{-# INLINE (//) #-}
{-|
Takes an array and a list of pairs and returns an array identical to
the left argument except that it has been updated by the associations
in the right argument. For example, if m is a 1-origin, n by n matrix,
then @m\/\/[((i,i), 0) | i \<- [1..n]]@ is the same matrix, except with
the diagonal zeroed.
As with the 'array' function, if any two associations in the list have
the same index, the value at that index is implementation-dependent.
(In GHC, the last value specified for that index is used.
Other implementations will also do this for unboxed arrays, but Haskell
98 requires that for 'Array' the value at such indices is bottom.)
For most array types, this operation is O(/n/) where /n/ is the size
of the array. However, the diffarray package provides an array type
for which this operation has complexity linear in the number of updates.
-}
(//) :: (IArray a e, Ix i) => a i e -> [(i, e)] -> a i e
arr // ies = case bounds arr of
(l,u) -> unsafeReplace arr [ (safeIndex (l,u) (numElements arr) i, e)
| (i, e) <- ies]
{-# INLINE accum #-}
{-|
@accum f@ takes an array and an association list and accumulates pairs
from the list into the array with the accumulating function @f@. Thus
'accumArray' can be defined using 'accum':
> accumArray f z b = accum f (array b [(i, z) | i \<- range b])
-}
accum :: (IArray a e, Ix i) => (e -> e' -> e) -> a i e -> [(i, e')] -> a i e
accum f arr ies = case bounds arr of
(l,u) -> let n = numElements arr
in unsafeAccum f arr [(safeIndex (l,u) n i, e) | (i, e) <- ies]
{-# INLINE amap #-}
-- | Returns a new array derived from the original array by applying a
-- function to each of the elements.
amap :: (IArray a e', IArray a e, Ix i) => (e' -> e) -> a i e' -> a i e
amap f arr = case bounds arr of
(l,u) -> let n = numElements arr
in unsafeArray (l,u) [ (i, f (unsafeAt arr i))
| i <- [0 .. n - 1]]
{-# INLINE ixmap #-}
-- | Returns a new array derived from the original array by applying a
-- function to each of the indices.
ixmap :: (IArray a e, Ix i, Ix j) => (i,i) -> (i -> j) -> a j e -> a i e
ixmap (l,u) f arr =
array (l,u) [(i, arr ! f i) | i <- range (l,u)]
-----------------------------------------------------------------------------
-- Normal polymorphic arrays
instance IArray Arr.Array e where
{-# INLINE bounds #-}
bounds = Arr.bounds
{-# INLINE numElements #-}
numElements = Arr.numElements
{-# INLINE unsafeArray #-}
unsafeArray = Arr.unsafeArray
{-# INLINE unsafeAt #-}
unsafeAt = Arr.unsafeAt
{-# INLINE unsafeReplace #-}
unsafeReplace = Arr.unsafeReplace
{-# INLINE unsafeAccum #-}
unsafeAccum = Arr.unsafeAccum
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray = Arr.unsafeAccumArray
-----------------------------------------------------------------------------
-- Flat unboxed arrays
-- | Arrays with unboxed elements. Instances of 'IArray' are provided
-- for 'UArray' with certain element types ('Int', 'Float', 'Char',
-- etc.; see the 'UArray' class for a full list).
--
-- A 'UArray' will generally be more efficient (in terms of both time
-- and space) than the equivalent 'Data.Array.Array' with the same
-- element type. However, 'UArray' is strict in its elements - so
-- don\'t use 'UArray' if you require the non-strictness that
-- 'Data.Array.Array' provides.
--
-- Because the @IArray@ interface provides operations overloaded on
-- the type of the array, it should be possible to just change the
-- array type being used by a program from say @Array@ to @UArray@ to
-- get the benefits of unboxed arrays (don\'t forget to import
-- "Data.Array.Unboxed" instead of "Data.Array").
--
data UArray i e = UArray !i !i !Int ByteArray#
-- There are class-based invariants on both parameters. See also #9220.
type role UArray nominal nominal
{-# INLINE unsafeArrayUArray #-}
unsafeArrayUArray :: (MArray (STUArray s) e (ST s), Ix i)
=> (i,i) -> [(Int, e)] -> e -> ST s (UArray i e)
unsafeArrayUArray (l,u) ies default_elem = do
marr <- newArray (l,u) default_elem
sequence_ [unsafeWrite marr i e | (i, e) <- ies]
unsafeFreezeSTUArray marr
{-# INLINE unsafeFreezeSTUArray #-}
unsafeFreezeSTUArray :: STUArray s i e -> ST s (UArray i e)
unsafeFreezeSTUArray (STUArray l u n marr#) = ST $ \s1# ->
case unsafeFreezeByteArray# marr# s1# of { (# s2#, arr# #) ->
(# s2#, UArray l u n arr# #) }
{-# INLINE unsafeReplaceUArray #-}
unsafeReplaceUArray :: (MArray (STUArray s) e (ST s), Ix i)
=> UArray i e -> [(Int, e)] -> ST s (UArray i e)
unsafeReplaceUArray arr ies = do
marr <- thawSTUArray arr
sequence_ [unsafeWrite marr i e | (i, e) <- ies]
unsafeFreezeSTUArray marr
{-# INLINE unsafeAccumUArray #-}
unsafeAccumUArray :: (MArray (STUArray s) e (ST s), Ix i)
=> (e -> e' -> e) -> UArray i e -> [(Int, e')] -> ST s (UArray i e)
unsafeAccumUArray f arr ies = do
marr <- thawSTUArray arr
sequence_ [do old <- unsafeRead marr i
unsafeWrite marr i (f old new)
| (i, new) <- ies]
unsafeFreezeSTUArray marr
{-# INLINE unsafeAccumArrayUArray #-}
unsafeAccumArrayUArray :: (MArray (STUArray s) e (ST s), Ix i)
=> (e -> e' -> e) -> e -> (i,i) -> [(Int, e')] -> ST s (UArray i e)
unsafeAccumArrayUArray f initialValue (l,u) ies = do
marr <- newArray (l,u) initialValue
sequence_ [do old <- unsafeRead marr i
unsafeWrite marr i (f old new)
| (i, new) <- ies]
unsafeFreezeSTUArray marr
{-# INLINE eqUArray #-}
eqUArray :: (IArray UArray e, Ix i, Eq e) => UArray i e -> UArray i e -> Bool
eqUArray arr1@(UArray l1 u1 n1 _) arr2@(UArray l2 u2 n2 _) =
if n1 == 0 then n2 == 0 else
l1 == l2 && u1 == u2 &&
and [unsafeAt arr1 i == unsafeAt arr2 i | i <- [0 .. n1 - 1]]
{-# INLINE [1] cmpUArray #-}
cmpUArray :: (IArray UArray e, Ix i, Ord e) => UArray i e -> UArray i e -> Ordering
cmpUArray arr1 arr2 = compare (assocs arr1) (assocs arr2)
{-# INLINE cmpIntUArray #-}
cmpIntUArray :: (IArray UArray e, Ord e) => UArray Int e -> UArray Int e -> Ordering
cmpIntUArray arr1@(UArray l1 u1 n1 _) arr2@(UArray l2 u2 n2 _) =
if n1 == 0 then if n2 == 0 then EQ else LT else
if n2 == 0 then GT else
case compare l1 l2 of
EQ -> foldr cmp (compare u1 u2) [0 .. (n1 `min` n2) - 1]
other -> other
where
cmp i rest = case compare (unsafeAt arr1 i) (unsafeAt arr2 i) of
EQ -> rest
other -> other
{-# RULES "cmpUArray/Int" cmpUArray = cmpIntUArray #-}
-----------------------------------------------------------------------------
-- Showing and Reading IArrays
{-# SPECIALISE
showsIArray :: (IArray UArray e, Ix i, Show i, Show e) =>
Int -> UArray i e -> ShowS
#-}
showsIArray :: (IArray a e, Ix i, Show i, Show e) => Int -> a i e -> ShowS
showsIArray p a =
showParen (p > appPrec) $
showString "array " .
shows (bounds a) .
showChar ' ' .
shows (assocs a)
{-# SPECIALISE
readIArray :: (IArray UArray e, Ix i, Read i, Read e) =>
ReadPrec (UArray i e)
#-}
readIArray :: (IArray a e, Ix i, Read i, Read e) => ReadPrec (a i e)
readIArray = parens $ prec appPrec $
do expectP (Ident "array")
theBounds <- step readPrec
vals <- step readPrec
return (array theBounds vals)
-----------------------------------------------------------------------------
-- Flat unboxed arrays: instances
instance IArray UArray Bool where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies False)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = isTrue#
((indexWordArray# arr# (bOOL_INDEX i#) `and#` bOOL_BIT i#)
`neWord#` int2Word# 0#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Char where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies '\0')
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = C# (indexWideCharArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Int where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = I# (indexIntArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Word where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = W# (indexWordArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray (Ptr a) where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies nullPtr)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = Ptr (indexAddrArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray (FunPtr a) where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies nullFunPtr)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = FunPtr (indexAddrArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Float where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = F# (indexFloatArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Double where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = D# (indexDoubleArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray (StablePtr a) where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies nullStablePtr)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = StablePtr (indexStablePtrArray# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
-- bogus StablePtr value for initialising a UArray of StablePtr.
nullStablePtr :: StablePtr a
nullStablePtr = StablePtr (unsafeCoerce# 0#)
instance IArray UArray Int8 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = I8# (indexInt8Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Int16 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = I16# (indexInt16Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Int32 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = I32# (indexInt32Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Int64 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = I64# (indexInt64Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Word8 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = W8# (indexWord8Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Word16 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = W16# (indexWord16Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Word32 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = W32# (indexWord32Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance IArray UArray Word64 where
{-# INLINE bounds #-}
bounds (UArray l u _ _) = (l,u)
{-# INLINE numElements #-}
numElements (UArray _ _ n _) = n
{-# INLINE unsafeArray #-}
unsafeArray lu ies = runST (unsafeArrayUArray lu ies 0)
{-# INLINE unsafeAt #-}
unsafeAt (UArray _ _ _ arr#) (I# i#) = W64# (indexWord64Array# arr# i#)
{-# INLINE unsafeReplace #-}
unsafeReplace arr ies = runST (unsafeReplaceUArray arr ies)
{-# INLINE unsafeAccum #-}
unsafeAccum f arr ies = runST (unsafeAccumUArray f arr ies)
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray f initialValue lu ies = runST (unsafeAccumArrayUArray f initialValue lu ies)
instance (Ix ix, Eq e, IArray UArray e) => Eq (UArray ix e) where
(==) = eqUArray
instance (Ix ix, Ord e, IArray UArray e) => Ord (UArray ix e) where
compare = cmpUArray
instance (Ix ix, Show ix, Show e, IArray UArray e) => Show (UArray ix e) where
showsPrec = showsIArray
instance (Ix ix, Read ix, Read e, IArray UArray e) => Read (UArray ix e) where
readPrec = readIArray
-----------------------------------------------------------------------------
-- Mutable arrays
{-# NOINLINE arrEleBottom #-}
arrEleBottom :: a
arrEleBottom = error "MArray: undefined array element"
{-| Class of mutable array types.
An array type has the form @(a i e)@ where @a@ is the array type
constructor (kind @* -> * -> *@), @i@ is the index type (a member of
the class 'Ix'), and @e@ is the element type.
The @MArray@ class is parameterised over both @a@ and @e@ (so that
instances specialised to certain element types can be defined, in the
same way as for 'IArray'), and also over the type of the monad, @m@,
in which the mutable array will be manipulated.
-}
class (Monad m) => MArray a e m where
-- | Returns the bounds of the array
getBounds :: Ix i => a i e -> m (i,i)
-- | Returns the number of elements in the array
getNumElements :: Ix i => a i e -> m Int
-- | Builds a new array, with every element initialised to the supplied
-- value.
newArray :: Ix i => (i,i) -> e -> m (a i e)
-- | Builds a new array, with every element initialised to an
-- undefined value. In a monadic context in which operations must
-- be deterministic (e.g. the ST monad), the array elements are
-- initialised to a fixed but undefined value, such as zero.
newArray_ :: Ix i => (i,i) -> m (a i e)
-- | Builds a new array, with every element initialised to an undefined
-- value.
unsafeNewArray_ :: Ix i => (i,i) -> m (a i e)
unsafeRead :: Ix i => a i e -> Int -> m e
unsafeWrite :: Ix i => a i e -> Int -> e -> m ()
{-# INLINE newArray #-}
-- The INLINE is crucial, because until we know at least which monad
-- we are in, the code below allocates like crazy. So inline it,
-- in the hope that the context will know the monad.
newArray (l,u) initialValue = do
let n = safeRangeSize (l,u)
marr <- unsafeNewArray_ (l,u)
sequence_ [unsafeWrite marr i initialValue | i <- [0 .. n - 1]]
return marr
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = newArray (l,u) arrEleBottom
{-# INLINE newArray_ #-}
newArray_ (l,u) = newArray (l,u) arrEleBottom
-- newArray takes an initialiser which all elements of
-- the newly created array are initialised to. unsafeNewArray_ takes
-- no initialiser, it is assumed that the array is initialised with
-- "undefined" values.
-- why not omit unsafeNewArray_? Because in the unboxed array
-- case we would like to omit the initialisation altogether if
-- possible. We can't do this for boxed arrays, because the
-- elements must all have valid values at all times in case of
-- garbage collection.
-- why not omit newArray? Because in the boxed case, we can omit the
-- default initialisation with undefined values if we *do* know the
-- initial value and it is constant for all elements.
instance MArray IOArray e IO where
{-# INLINE getBounds #-}
getBounds (IOArray marr) = stToIO $ getBounds marr
{-# INLINE getNumElements #-}
getNumElements (IOArray marr) = stToIO $ getNumElements marr
newArray = newIOArray
unsafeRead = unsafeReadIOArray
unsafeWrite = unsafeWriteIOArray
{-# INLINE newListArray #-}
-- | Constructs a mutable array from a list of initial elements.
-- The list gives the elements of the array in ascending order
-- beginning with the lowest index.
newListArray :: (MArray a e m, Ix i) => (i,i) -> [e] -> m (a i e)
newListArray (l,u) es = do
marr <- newArray_ (l,u)
let n = safeRangeSize (l,u)
let fillFromList i xs | i == n = return ()
| otherwise = case xs of
[] -> return ()
y:ys -> unsafeWrite marr i y >> fillFromList (i+1) ys
fillFromList 0 es
return marr
{-# INLINE readArray #-}
-- | Read an element from a mutable array
readArray :: (MArray a e m, Ix i) => a i e -> i -> m e
readArray marr i = do
(l,u) <- getBounds marr
n <- getNumElements marr
unsafeRead marr (safeIndex (l,u) n i)
{-# INLINE writeArray #-}
-- | Write an element in a mutable array
writeArray :: (MArray a e m, Ix i) => a i e -> i -> e -> m ()
writeArray marr i e = do
(l,u) <- getBounds marr
n <- getNumElements marr
unsafeWrite marr (safeIndex (l,u) n i) e
{-# INLINE getElems #-}
-- | Return a list of all the elements of a mutable array
getElems :: (MArray a e m, Ix i) => a i e -> m [e]
getElems marr = do
(_l, _u) <- getBounds marr
n <- getNumElements marr
sequence [unsafeRead marr i | i <- [0 .. n - 1]]
{-# INLINE getAssocs #-}
-- | Return a list of all the associations of a mutable array, in
-- index order.
getAssocs :: (MArray a e m, Ix i) => a i e -> m [(i, e)]
getAssocs marr = do
(l,u) <- getBounds marr
n <- getNumElements marr
sequence [ do e <- unsafeRead marr (safeIndex (l,u) n i); return (i,e)
| i <- range (l,u)]
{-# INLINE mapArray #-}
-- | Constructs a new array derived from the original array by applying a
-- function to each of the elements.
mapArray :: (MArray a e' m, MArray a e m, Ix i) => (e' -> e) -> a i e' -> m (a i e)
mapArray f marr = do
(l,u) <- getBounds marr
n <- getNumElements marr
marr' <- newArray_ (l,u)
sequence_ [do e <- unsafeRead marr i
unsafeWrite marr' i (f e)
| i <- [0 .. n - 1]]
return marr'
{-# INLINE mapIndices #-}
-- | Constructs a new array derived from the original array by applying a
-- function to each of the indices.
mapIndices :: (MArray a e m, Ix i, Ix j) => (i,i) -> (i -> j) -> a j e -> m (a i e)
mapIndices (l',u') f marr = do
marr' <- newArray_ (l',u')
n' <- getNumElements marr'
sequence_ [do e <- readArray marr (f i')
unsafeWrite marr' (safeIndex (l',u') n' i') e
| i' <- range (l',u')]
return marr'
-----------------------------------------------------------------------------
-- Polymorphic non-strict mutable arrays (ST monad)
instance MArray (STArray s) e (ST s) where
{-# INLINE getBounds #-}
getBounds arr = return $! ArrST.boundsSTArray arr
{-# INLINE getNumElements #-}
getNumElements arr = return $! ArrST.numElementsSTArray arr
{-# INLINE newArray #-}
newArray = ArrST.newSTArray
{-# INLINE unsafeRead #-}
unsafeRead = ArrST.unsafeReadSTArray
{-# INLINE unsafeWrite #-}
unsafeWrite = ArrST.unsafeWriteSTArray
instance MArray (STArray s) e (Lazy.ST s) where
{-# INLINE getBounds #-}
getBounds arr = strictToLazyST (return $! ArrST.boundsSTArray arr)
{-# INLINE getNumElements #-}
getNumElements arr = strictToLazyST (return $! ArrST.numElementsSTArray arr)
{-# INLINE newArray #-}
newArray (l,u) e = strictToLazyST (ArrST.newSTArray (l,u) e)
{-# INLINE unsafeRead #-}
unsafeRead arr i = strictToLazyST (ArrST.unsafeReadSTArray arr i)
{-# INLINE unsafeWrite #-}
unsafeWrite arr i e = strictToLazyST (ArrST.unsafeWriteSTArray arr i e)
-----------------------------------------------------------------------------
-- Flat unboxed mutable arrays (ST monad)
-- | A mutable array with unboxed elements, that can be manipulated in
-- the 'ST' monad. The type arguments are as follows:
--
-- * @s@: the state variable argument for the 'ST' type
--
-- * @i@: the index type of the array (should be an instance of @Ix@)
--
-- * @e@: the element type of the array. Only certain element types
-- are supported.
--
-- An 'STUArray' will generally be more efficient (in terms of both time
-- and space) than the equivalent boxed version ('STArray') with the same
-- element type. However, 'STUArray' is strict in its elements - so
-- don\'t use 'STUArray' if you require the non-strictness that
-- 'STArray' provides.
data STUArray s i e = STUArray !i !i !Int (MutableByteArray# s)
-- The "ST" parameter must be nominal for the safety of the ST trick.
-- The other parameters have class constraints. See also #9220.
type role STUArray nominal nominal nominal
instance Eq (STUArray s i e) where
STUArray _ _ _ arr1# == STUArray _ _ _ arr2# =
isTrue# (sameMutableByteArray# arr1# arr2#)
{-# INLINE unsafeNewArraySTUArray_ #-}
unsafeNewArraySTUArray_ :: Ix i
=> (i,i) -> (Int# -> Int#) -> ST s (STUArray s i e)
unsafeNewArraySTUArray_ (l,u) elemsToBytes
= case rangeSize (l,u) of
n@(I# n#) ->
ST $ \s1# ->
case newByteArray# (elemsToBytes n#) s1# of
(# s2#, marr# #) ->
(# s2#, STUArray l u n marr# #)
instance MArray (STUArray s) Bool (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE newArray #-}
newArray (l,u) initialValue = ST $ \s1# ->
case safeRangeSize (l,u) of { n@(I# n#) ->
case bOOL_SCALE n# of { nbytes# ->
case newByteArray# nbytes# s1# of { (# s2#, marr# #) ->
case setByteArray# marr# 0# nbytes# e# s2# of { s3# ->
(# s3#, STUArray l u n marr# #) }}}}
where
!(I# e#) = if initialValue then 0xff else 0x0
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) bOOL_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds False
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readWordArray# marr# (bOOL_INDEX i#) s1# of { (# s2#, e# #) ->
(# s2#, isTrue# ((e# `and#` bOOL_BIT i#) `neWord#` int2Word# 0#) :: Bool #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) e = ST $ \s1# ->
case bOOL_INDEX i# of { j# ->
case readWordArray# marr# j# s1# of { (# s2#, old# #) ->
case if e then old# `or#` bOOL_BIT i#
else old# `and#` bOOL_NOT_BIT i# of { e# ->
case writeWordArray# marr# j# e# s2# of { s3# ->
(# s3#, () #) }}}}
instance MArray (STUArray s) Char (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (safe_scale 4#)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds (chr 0)
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readWideCharArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, C# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (C# e#) = ST $ \s1# ->
case writeWideCharArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Int (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) wORD_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readIntArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, I# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (I# e#) = ST $ \s1# ->
case writeIntArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Word (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) wORD_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readWordArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, W# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (W# e#) = ST $ \s1# ->
case writeWordArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) (Ptr a) (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) wORD_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds nullPtr
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readAddrArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, Ptr e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (Ptr e#) = ST $ \s1# ->
case writeAddrArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) (FunPtr a) (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) wORD_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds nullFunPtr
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readAddrArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, FunPtr e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (FunPtr e#) = ST $ \s1# ->
case writeAddrArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Float (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) fLOAT_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readFloatArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, F# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (F# e#) = ST $ \s1# ->
case writeFloatArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Double (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) dOUBLE_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readDoubleArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, D# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (D# e#) = ST $ \s1# ->
case writeDoubleArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) (StablePtr a) (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) wORD_SCALE
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds (castPtrToStablePtr nullPtr)
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readStablePtrArray# marr# i# s1# of { (# s2#, e# #) ->
(# s2# , StablePtr e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (StablePtr e#) = ST $ \s1# ->
case writeStablePtrArray# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Int8 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (\x -> x)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readInt8Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, I8# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (I8# e#) = ST $ \s1# ->
case writeInt8Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Int16 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (safe_scale 2#)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readInt16Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, I16# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (I16# e#) = ST $ \s1# ->
case writeInt16Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Int32 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (safe_scale 4#)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readInt32Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, I32# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (I32# e#) = ST $ \s1# ->
case writeInt32Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Int64 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (safe_scale 8#)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readInt64Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, I64# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (I64# e#) = ST $ \s1# ->
case writeInt64Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Word8 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (\x -> x)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readWord8Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, W8# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (W8# e#) = ST $ \s1# ->
case writeWord8Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Word16 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (safe_scale 2#)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readWord16Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, W16# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (W16# e#) = ST $ \s1# ->
case writeWord16Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Word32 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (safe_scale 4#)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readWord32Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, W32# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (W32# e#) = ST $ \s1# ->
case writeWord32Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
instance MArray (STUArray s) Word64 (ST s) where
{-# INLINE getBounds #-}
getBounds (STUArray l u _ _) = return (l,u)
{-# INLINE getNumElements #-}
getNumElements (STUArray _ _ n _) = return n
{-# INLINE unsafeNewArray_ #-}
unsafeNewArray_ (l,u) = unsafeNewArraySTUArray_ (l,u) (safe_scale 8#)
{-# INLINE newArray_ #-}
newArray_ arrBounds = newArray arrBounds 0
{-# INLINE unsafeRead #-}
unsafeRead (STUArray _ _ _ marr#) (I# i#) = ST $ \s1# ->
case readWord64Array# marr# i# s1# of { (# s2#, e# #) ->
(# s2#, W64# e# #) }
{-# INLINE unsafeWrite #-}
unsafeWrite (STUArray _ _ _ marr#) (I# i#) (W64# e#) = ST $ \s1# ->
case writeWord64Array# marr# i# e# s1# of { s2# ->
(# s2#, () #) }
-----------------------------------------------------------------------------
-- Translation between elements and bytes
bOOL_SCALE, wORD_SCALE, dOUBLE_SCALE, fLOAT_SCALE :: Int# -> Int#
bOOL_SCALE n# =
-- + 7 to handle case where n is not divisible by 8
(n# +# 7#) `uncheckedIShiftRA#` 3#
wORD_SCALE n# = safe_scale scale# n# where !(I# scale#) = SIZEOF_HSWORD
dOUBLE_SCALE n# = safe_scale scale# n# where !(I# scale#) = SIZEOF_HSDOUBLE
fLOAT_SCALE n# = safe_scale scale# n# where !(I# scale#) = SIZEOF_HSFLOAT
safe_scale :: Int# -> Int# -> Int#
safe_scale scale# n#
| not overflow = res#
| otherwise = error $ "Data.Array.Base.safe_scale: Overflow; scale: "
++ show (I# scale#) ++ ", n: " ++ show (I# n#)
where
!res# = scale# *# n#
!overflow = isTrue# (maxN# `divInt#` scale# <# n#)
!(I# maxN#) = maxBound
{-# INLINE safe_scale #-}
-- | The index of the word which the given @Bool@ array elements falls within.
bOOL_INDEX :: Int# -> Int#
#if SIZEOF_HSWORD == 4
bOOL_INDEX i# = i# `uncheckedIShiftRA#` 5#
#elif SIZEOF_HSWORD == 8
bOOL_INDEX i# = i# `uncheckedIShiftRA#` 6#
#endif
bOOL_BIT, bOOL_NOT_BIT :: Int# -> Word#
bOOL_BIT n# = int2Word# 1# `uncheckedShiftL#` (word2Int# (int2Word# n# `and#` mask#))
where !(W# mask#) = SIZEOF_HSWORD * 8 - 1
bOOL_NOT_BIT n# = bOOL_BIT n# `xor#` mb#
where !(W# mb#) = maxBound
-----------------------------------------------------------------------------
-- Freezing
-- | Converts a mutable array (any instance of 'MArray') to an
-- immutable array (any instance of 'IArray') by taking a complete
-- copy of it.
freeze :: (Ix i, MArray a e m, IArray b e) => a i e -> m (b i e)
{-# NOINLINE [1] freeze #-}
freeze marr = do
(l,u) <- getBounds marr
n <- getNumElements marr
es <- mapM (unsafeRead marr) [0 .. n - 1]
-- The old array and index might not be well-behaved, so we need to
-- use the safe array creation function here.
return (listArray (l,u) es)
freezeSTUArray :: STUArray s i e -> ST s (UArray i e)
freezeSTUArray (STUArray l u n marr#) = ST $ \s1# ->
case sizeofMutableByteArray# marr# of { n# ->
case newByteArray# n# s1# of { (# s2#, marr'# #) ->
case memcpy_freeze marr'# marr# (fromIntegral (I# n#)) of { IO m ->
case unsafeCoerce# m s2# of { (# s3#, _ #) ->
case unsafeFreezeByteArray# marr'# s3# of { (# s4#, arr# #) ->
(# s4#, UArray l u n arr# #) }}}}}
foreign import ccall unsafe "memcpy"
memcpy_freeze :: MutableByteArray# s -> MutableByteArray# s -> CSize
-> IO (Ptr a)
{-# RULES
"freeze/STArray" freeze = ArrST.freezeSTArray
"freeze/STUArray" freeze = freezeSTUArray
#-}
-- In-place conversion of mutable arrays to immutable ones places
-- a proof obligation on the user: no other parts of your code can
-- have a reference to the array at the point where you unsafely
-- freeze it (and, subsequently mutate it, I suspect).
{- |
Converts an mutable array into an immutable array. The
implementation may either simply cast the array from
one type to the other without copying the array, or it
may take a full copy of the array.
Note that because the array is possibly not copied, any subsequent
modifications made to the mutable version of the array may be
shared with the immutable version. It is safe to use, therefore, if
the mutable version is never modified after the freeze operation.
The non-copying implementation is supported between certain pairs
of array types only; one constraint is that the array types must
have identical representations. In GHC, The following pairs of
array types have a non-copying O(1) implementation of
'unsafeFreeze'. Because the optimised versions are enabled by
specialisations, you will need to compile with optimisation (-O) to
get them.
* 'Data.Array.IO.IOUArray' -> 'Data.Array.Unboxed.UArray'
* 'Data.Array.ST.STUArray' -> 'Data.Array.Unboxed.UArray'
* 'Data.Array.IO.IOArray' -> 'Data.Array.Array'
* 'Data.Array.ST.STArray' -> 'Data.Array.Array'
-}
{-# INLINE [1] unsafeFreeze #-}
unsafeFreeze :: (Ix i, MArray a e m, IArray b e) => a i e -> m (b i e)
unsafeFreeze = freeze
{-# RULES
"unsafeFreeze/STArray" unsafeFreeze = ArrST.unsafeFreezeSTArray
"unsafeFreeze/STUArray" unsafeFreeze = unsafeFreezeSTUArray
#-}
-----------------------------------------------------------------------------
-- Thawing
-- | Converts an immutable array (any instance of 'IArray') into a
-- mutable array (any instance of 'MArray') by taking a complete copy
-- of it.
thaw :: (Ix i, IArray a e, MArray b e m) => a i e -> m (b i e)
{-# NOINLINE [1] thaw #-}
thaw arr = case bounds arr of
(l,u) -> do
marr <- newArray_ (l,u)
let n = safeRangeSize (l,u)
sequence_ [ unsafeWrite marr i (unsafeAt arr i)
| i <- [0 .. n - 1]]
return marr
thawSTUArray :: UArray i e -> ST s (STUArray s i e)
thawSTUArray (UArray l u n arr#) = ST $ \s1# ->
case sizeofByteArray# arr# of { n# ->
case newByteArray# n# s1# of { (# s2#, marr# #) ->
case memcpy_thaw marr# arr# (fromIntegral (I# n#)) of { IO m ->
case unsafeCoerce# m s2# of { (# s3#, _ #) ->
(# s3#, STUArray l u n marr# #) }}}}
foreign import ccall unsafe "memcpy"
memcpy_thaw :: MutableByteArray# s -> ByteArray# -> CSize
-> IO (Ptr a)
{-# RULES
"thaw/STArray" thaw = ArrST.thawSTArray
"thaw/STUArray" thaw = thawSTUArray
#-}
-- In-place conversion of immutable arrays to mutable ones places
-- a proof obligation on the user: no other parts of your code can
-- have a reference to the array at the point where you unsafely
-- thaw it (and, subsequently mutate it, I suspect).
{- |
Converts an immutable array into a mutable array. The
implementation may either simply cast the array from
one type to the other without copying the array, or it
may take a full copy of the array.
Note that because the array is possibly not copied, any subsequent
modifications made to the mutable version of the array may be
shared with the immutable version. It is only safe to use,
therefore, if the immutable array is never referenced again in this
thread, and there is no possibility that it can be also referenced
in another thread. If you use an unsafeThaw/write/unsafeFreeze
sequence in a multi-threaded setting, then you must ensure that
this sequence is atomic with respect to other threads, or a garbage
collector crash may result (because the write may be writing to a
frozen array).
The non-copying implementation is supported between certain pairs
of array types only; one constraint is that the array types must
have identical representations. In GHC, The following pairs of
array types have a non-copying O(1) implementation of
'unsafeThaw'. Because the optimised versions are enabled by
specialisations, you will need to compile with optimisation (-O) to
get them.
* 'Data.Array.Unboxed.UArray' -> 'Data.Array.IO.IOUArray'
* 'Data.Array.Unboxed.UArray' -> 'Data.Array.ST.STUArray'
* 'Data.Array.Array' -> 'Data.Array.IO.IOArray'
* 'Data.Array.Array' -> 'Data.Array.ST.STArray'
-}
{-# INLINE [1] unsafeThaw #-}
unsafeThaw :: (Ix i, IArray a e, MArray b e m) => a i e -> m (b i e)
unsafeThaw = thaw
{-# INLINE unsafeThawSTUArray #-}
unsafeThawSTUArray :: UArray i e -> ST s (STUArray s i e)
unsafeThawSTUArray (UArray l u n marr#) =
return (STUArray l u n (unsafeCoerce# marr#))
{-# RULES
"unsafeThaw/STArray" unsafeThaw = ArrST.unsafeThawSTArray
"unsafeThaw/STUArray" unsafeThaw = unsafeThawSTUArray
#-}
{-# INLINE unsafeThawIOArray #-}
unsafeThawIOArray :: Arr.Array ix e -> IO (IOArray ix e)
unsafeThawIOArray arr = stToIO $ do
marr <- ArrST.unsafeThawSTArray arr
return (IOArray marr)
{-# RULES
"unsafeThaw/IOArray" unsafeThaw = unsafeThawIOArray
#-}
thawIOArray :: Arr.Array ix e -> IO (IOArray ix e)
thawIOArray arr = stToIO $ do
marr <- ArrST.thawSTArray arr
return (IOArray marr)
{-# RULES
"thaw/IOArray" thaw = thawIOArray
#-}
freezeIOArray :: IOArray ix e -> IO (Arr.Array ix e)
freezeIOArray (IOArray marr) = stToIO (ArrST.freezeSTArray marr)
{-# RULES
"freeze/IOArray" freeze = freezeIOArray
#-}
{-# INLINE unsafeFreezeIOArray #-}
unsafeFreezeIOArray :: IOArray ix e -> IO (Arr.Array ix e)
unsafeFreezeIOArray (IOArray marr) = stToIO (ArrST.unsafeFreezeSTArray marr)
{-# RULES
"unsafeFreeze/IOArray" unsafeFreeze = unsafeFreezeIOArray
#-}
-- | Casts an 'STUArray' with one element type into one with a
-- different element type. All the elements of the resulting array
-- are undefined (unless you know what you\'re doing...).
castSTUArray :: STUArray s ix a -> ST s (STUArray s ix b)
castSTUArray (STUArray l u n marr#) = return (STUArray l u n marr#)
|