1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
|
/* ----------------------------------------------------------------------------
(c) The University of Glasgow 2004
Support for System.Process
------------------------------------------------------------------------- */
#if defined(_MSC_VER) || defined(__MINGW32__) || defined(_WIN32)
#define UNICODE
#endif
/* XXX This is a nasty hack; should put everything necessary in this package */
#include "HsBase.h"
#include "Rts.h"
#include "runProcess.h"
#if !(defined(_MSC_VER) || defined(__MINGW32__) || defined(_WIN32))
#include "execvpe.h"
/* ----------------------------------------------------------------------------
UNIX versions
------------------------------------------------------------------------- */
// If a process was terminated by a signal, the exit status we return
// via the System.Process API is (-signum). This encoding avoids collision with
// normal process termination status codes. See also #7229.
#define TERMSIG_EXITSTATUS(s) (-(WTERMSIG(s)))
static long max_fd = 0;
// Rts internal API, not exposed in a public header file:
extern void blockUserSignals(void);
extern void unblockUserSignals(void);
// These are arbitrarily chosen -- JP
#define forkSetgidFailed 124
#define forkSetuidFailed 125
// See #1593. The convention for the exit code when
// exec() fails seems to be 127 (gleened from C's
// system()), but there's no equivalent convention for
// chdir(), so I'm picking 126 --SimonM.
#define forkChdirFailed 126
#define forkExecFailed 127
#define forkGetpwuidFailed 128
#define forkInitgroupsFailed 129
__attribute__((__noreturn__))
static void childFailed(int pipe, int failCode) {
int err;
ssize_t unused __attribute__((unused));
err = errno;
unused = write(pipe, &failCode, sizeof(failCode));
unused = write(pipe, &err, sizeof(err));
// As a fallback, exit with the failCode
_exit(failCode);
}
ProcHandle
runInteractiveProcess (char *const args[],
char *workingDirectory, char **environment,
int fdStdIn, int fdStdOut, int fdStdErr,
int *pfdStdInput, int *pfdStdOutput, int *pfdStdError,
gid_t *childGroup, uid_t *childUser,
int reset_int_quit_handlers,
int flags,
char **failed_doing)
{
int close_fds = ((flags & RUN_PROCESS_IN_CLOSE_FDS) != 0);
int pid;
int fdStdInput[2], fdStdOutput[2], fdStdError[2];
int forkCommunicationFds[2];
int r;
int failCode, err;
// Ordering matters here, see below [Note #431].
if (fdStdIn == -1) {
r = pipe(fdStdInput);
if (r == -1) {
*failed_doing = "runInteractiveProcess: pipe";
return -1;
}
}
if (fdStdOut == -1) {
r = pipe(fdStdOutput);
if (r == -1) {
if (fdStdIn == -1) {
close(fdStdInput[0]);
close(fdStdInput[1]);
}
*failed_doing = "runInteractiveProcess: pipe";
return -1;
}
}
if (fdStdErr == -1) {
r = pipe(fdStdError);
if (r == -1) {
*failed_doing = "runInteractiveProcess: pipe";
if (fdStdIn == -1) {
close(fdStdInput[0]);
close(fdStdInput[1]);
}
if (fdStdOut == -1) {
close(fdStdOutput[0]);
close(fdStdOutput[1]);
}
return -1;
}
}
r = pipe(forkCommunicationFds);
if (r == -1) {
*failed_doing = "runInteractiveProcess: pipe";
if (fdStdIn == -1) {
close(fdStdInput[0]);
close(fdStdInput[1]);
}
if (fdStdOut == -1) {
close(fdStdOutput[0]);
close(fdStdOutput[1]);
}
if (fdStdErr == -1) {
close(fdStdError[0]);
close(fdStdError[1]);
}
return -1;
}
// Block signals with Haskell handlers. The danger here is that
// with the threaded RTS, a signal arrives in the child process,
// the RTS writes the signal information into the pipe (which is
// shared between parent and child), and the parent behaves as if
// the signal had been raised.
blockUserSignals();
// See #4074. Sometimes fork() gets interrupted by the timer
// signal and keeps restarting indefinitely.
stopTimer();
switch(pid = myfork())
{
case -1:
unblockUserSignals();
startTimer();
if (fdStdIn == -1) {
close(fdStdInput[0]);
close(fdStdInput[1]);
}
if (fdStdOut == -1) {
close(fdStdOutput[0]);
close(fdStdOutput[1]);
}
if (fdStdErr == -1) {
close(fdStdError[0]);
close(fdStdError[1]);
}
close(forkCommunicationFds[0]);
close(forkCommunicationFds[1]);
*failed_doing = "fork";
return -1;
case 0:
// WARNING! We may now be in the child of vfork(), and any
// memory we modify below may also be seen in the parent
// process.
close(forkCommunicationFds[0]);
fcntl(forkCommunicationFds[1], F_SETFD, FD_CLOEXEC);
if ((flags & RUN_PROCESS_NEW_SESSION) != 0) {
setsid();
}
if ((flags & RUN_PROCESS_IN_NEW_GROUP) != 0) {
setpgid(0, 0);
}
if ( childGroup) {
if ( setgid( *childGroup) != 0) {
// ERROR
childFailed(forkCommunicationFds[1], forkSetgidFailed);
}
}
if ( childUser) {
// Using setuid properly first requires that we initgroups.
// However, to do this we must know the username of the user we are
// switching to.
struct passwd pw;
struct passwd *res = NULL;
int buf_len = sysconf(_SC_GETPW_R_SIZE_MAX);
char *buf = malloc(buf_len);
gid_t suppl_gid = childGroup ? *childGroup : getgid();
if ( getpwuid_r(*childUser, &pw, buf, buf_len, &res) != 0) {
childFailed(forkCommunicationFds[1], forkGetpwuidFailed);
}
if ( res == NULL ) {
childFailed(forkCommunicationFds[1], forkGetpwuidFailed);
}
if ( initgroups(res->pw_name, suppl_gid) != 0) {
childFailed(forkCommunicationFds[1], forkInitgroupsFailed);
}
if ( setuid( *childUser) != 0) {
// ERROR
childFailed(forkCommunicationFds[1], forkSetuidFailed);
}
}
unblockUserSignals();
if (workingDirectory) {
if (chdir (workingDirectory) < 0) {
childFailed(forkCommunicationFds[1], forkChdirFailed);
}
}
// [Note #431]: Ordering matters here. If any of the FDs
// 0,1,2 were initially closed, then our pipes may have used
// these FDs. So when we dup2 the pipe FDs down to 0,1,2, we
// must do it in that order, otherwise we could overwrite an
// FD that we need later.
if (fdStdIn == -1) {
if (fdStdInput[0] != STDIN_FILENO) {
dup2 (fdStdInput[0], STDIN_FILENO);
close(fdStdInput[0]);
}
close(fdStdInput[1]);
} else if (fdStdIn == -2) {
close(STDIN_FILENO);
} else {
dup2(fdStdIn, STDIN_FILENO);
}
if (fdStdOut == -1) {
if (fdStdOutput[1] != STDOUT_FILENO) {
dup2 (fdStdOutput[1], STDOUT_FILENO);
close(fdStdOutput[1]);
}
close(fdStdOutput[0]);
} else if (fdStdOut == -2) {
close(STDOUT_FILENO);
} else {
dup2(fdStdOut, STDOUT_FILENO);
}
if (fdStdErr == -1) {
if (fdStdError[1] != STDERR_FILENO) {
dup2 (fdStdError[1], STDERR_FILENO);
close(fdStdError[1]);
}
close(fdStdError[0]);
} else if (fdStdErr == -2) {
close(STDERR_FILENO);
} else {
dup2(fdStdErr, STDERR_FILENO);
}
if (close_fds) {
int i;
if (max_fd == 0) {
#if HAVE_SYSCONF
max_fd = sysconf(_SC_OPEN_MAX);
if (max_fd == -1) {
max_fd = 256;
}
#else
max_fd = 256;
#endif
}
// XXX Not the pipe
for (i = 3; i < max_fd; i++) {
if (i != forkCommunicationFds[1]) {
close(i);
}
}
}
/* Reset the SIGINT/SIGQUIT signal handlers in the child, if requested
*/
if (reset_int_quit_handlers) {
struct sigaction dfl;
(void)sigemptyset(&dfl.sa_mask);
dfl.sa_flags = 0;
dfl.sa_handler = SIG_DFL;
(void)sigaction(SIGINT, &dfl, NULL);
(void)sigaction(SIGQUIT, &dfl, NULL);
}
/* the child */
if (environment) {
// XXX Check result
execvpe(args[0], args, environment);
} else {
// XXX Check result
execvp(args[0], args);
}
childFailed(forkCommunicationFds[1], forkExecFailed);
default:
if ((flags & RUN_PROCESS_IN_NEW_GROUP) != 0) {
setpgid(pid, pid);
}
if (fdStdIn == -1) {
close(fdStdInput[0]);
fcntl(fdStdInput[1], F_SETFD, FD_CLOEXEC);
*pfdStdInput = fdStdInput[1];
}
if (fdStdOut == -1) {
close(fdStdOutput[1]);
fcntl(fdStdOutput[0], F_SETFD, FD_CLOEXEC);
*pfdStdOutput = fdStdOutput[0];
}
if (fdStdErr == -1) {
close(fdStdError[1]);
fcntl(fdStdError[0], F_SETFD, FD_CLOEXEC);
*pfdStdError = fdStdError[0];
}
close(forkCommunicationFds[1]);
fcntl(forkCommunicationFds[0], F_SETFD, FD_CLOEXEC);
break;
}
// If the child process had a problem, then it will tell us via the
// forkCommunicationFds pipe. First we try to read what the problem
// was. Note that if none of these conditionals match then we fall
// through and just return pid.
r = read(forkCommunicationFds[0], &failCode, sizeof(failCode));
if (r == -1) {
*failed_doing = "runInteractiveProcess: read pipe";
pid = -1;
}
else if (r == sizeof(failCode)) {
// This is the case where we successfully managed to read
// the problem
switch (failCode) {
case forkChdirFailed:
*failed_doing = "runInteractiveProcess: chdir";
break;
case forkExecFailed:
*failed_doing = "runInteractiveProcess: exec";
break;
case forkSetgidFailed:
*failed_doing = "runInteractiveProcess: setgid";
break;
case forkSetuidFailed:
*failed_doing = "runInteractiveProcess: setuid";
break;
case forkGetpwuidFailed:
*failed_doing = "runInteractiveProcess: getpwuid";
break;
case forkInitgroupsFailed:
*failed_doing = "runInteractiveProcess: initgroups";
break;
default:
*failed_doing = "runInteractiveProcess: unknown";
break;
}
// Now we try to get the errno from the child
r = read(forkCommunicationFds[0], &err, sizeof(err));
if (r == -1) {
*failed_doing = "runInteractiveProcess: read pipe";
}
else if (r != sizeof(failCode)) {
*failed_doing = "runInteractiveProcess: read pipe bad length";
}
else {
// If we succeed then we set errno. It'll be saved and
// restored again below. Note that in any other case we'll
// get the errno of whatever else went wrong instead.
errno = err;
}
// We forked the child, but the child had a problem and stopped so it's
// our responsibility to reap here as nobody else can.
waitpid(pid, NULL, 0);
if (fdStdIn == -1) {
// Already closed fdStdInput[0] above
close(fdStdInput[1]);
}
if (fdStdOut == -1) {
close(fdStdOutput[0]);
// Already closed fdStdOutput[1] above
}
if (fdStdErr == -1) {
close(fdStdError[0]);
// Already closed fdStdError[1] above
}
pid = -1;
}
else if (r != 0) {
*failed_doing = "runInteractiveProcess: read pipe bad length";
pid = -1;
}
if (pid == -1) {
err = errno;
}
close(forkCommunicationFds[0]);
unblockUserSignals();
startTimer();
if (pid == -1) {
errno = err;
}
return pid;
}
int
terminateProcess (ProcHandle handle)
{
return (kill(handle, SIGTERM) == 0);
}
int
getProcessExitCode (ProcHandle handle, int *pExitCode)
{
int wstat, res;
*pExitCode = 0;
if ((res = waitpid(handle, &wstat, WNOHANG)) > 0)
{
if (WIFEXITED(wstat))
{
*pExitCode = WEXITSTATUS(wstat);
return 1;
}
else
if (WIFSIGNALED(wstat))
{
*pExitCode = TERMSIG_EXITSTATUS(wstat);
return 1;
}
else
{
/* This should never happen */
}
}
if (res == 0) return 0;
if (errno == ECHILD)
{
*pExitCode = 0;
return 1;
}
return -1;
}
int waitForProcess (ProcHandle handle, int *pret)
{
int wstat;
if (waitpid(handle, &wstat, 0) < 0)
{
return -1;
}
if (WIFEXITED(wstat)) {
*pret = WEXITSTATUS(wstat);
return 0;
}
else {
if (WIFSIGNALED(wstat))
{
*pret = TERMSIG_EXITSTATUS(wstat);
return 0;
}
else
{
/* This should never happen */
}
}
return -1;
}
#else
/* ----------------------------------------------------------------------------
Win32 versions
------------------------------------------------------------------------- */
/* -------------------- WINDOWS VERSION --------------------- */
/*
* Function: mkAnonPipe
*
* Purpose: create an anonymous pipe with read and write ends being
* optionally (non-)inheritable.
*/
static BOOL
mkAnonPipe (HANDLE* pHandleIn, BOOL isInheritableIn,
HANDLE* pHandleOut, BOOL isInheritableOut)
{
HANDLE hTemporaryIn = NULL;
HANDLE hTemporaryOut = NULL;
/* Create the anon pipe with both ends inheritable */
if (!CreatePipe(&hTemporaryIn, &hTemporaryOut, NULL, 0))
{
maperrno();
*pHandleIn = NULL;
*pHandleOut = NULL;
return FALSE;
}
if (isInheritableIn) {
// SetHandleInformation requires at least Win2k
if (!SetHandleInformation(hTemporaryIn,
HANDLE_FLAG_INHERIT,
HANDLE_FLAG_INHERIT))
{
maperrno();
*pHandleIn = NULL;
*pHandleOut = NULL;
CloseHandle(hTemporaryIn);
CloseHandle(hTemporaryOut);
return FALSE;
}
}
*pHandleIn = hTemporaryIn;
if (isInheritableOut) {
if (!SetHandleInformation(hTemporaryOut,
HANDLE_FLAG_INHERIT,
HANDLE_FLAG_INHERIT))
{
maperrno();
*pHandleIn = NULL;
*pHandleOut = NULL;
CloseHandle(hTemporaryIn);
CloseHandle(hTemporaryOut);
return FALSE;
}
}
*pHandleOut = hTemporaryOut;
return TRUE;
}
static HANDLE
createJob ()
{
HANDLE hJob = CreateJobObject (NULL, NULL);
JOBOBJECT_EXTENDED_LIMIT_INFORMATION jeli;
ZeroMemory(&jeli, sizeof(JOBOBJECT_EXTENDED_LIMIT_INFORMATION));
// Configure all child processes associated with the job to terminate when the
// Last process in the job terminates. This prevent half dead processes.
jeli.BasicLimitInformation.LimitFlags = JOB_OBJECT_LIMIT_KILL_ON_JOB_CLOSE;
if (SetInformationJobObject (hJob, JobObjectExtendedLimitInformation,
&jeli, sizeof(JOBOBJECT_EXTENDED_LIMIT_INFORMATION)))
{
return hJob;
}
maperrno();
return NULL;
}
/* Note [Windows exec interaction]
The basic issue that process jobs tried to solve is this:
Say you have two programs A and B. Now A calls B. There are two ways to do this.
1) You can use the normal CreateProcess API, which is what normal Windows code do.
Using this approach, the current waitForProcess works absolutely fine.
2) You can call the emulated POSIX function _exec, which of course is supposed to
allow the child process to replace the parent.
With approach 2) waitForProcess falls apart because the Win32's process model does
not allow this the same way as linux. _exec is emulated by first making a call to
CreateProcess to spawn B and then immediately exiting from A. So you have two
different processes.
waitForProcess is waiting on the termination of A. Because A is immediately killed,
waitForProcess will return even though B is still running. This is why for instance
the GHC testsuite on Windows had lots of file locked errors.
This approach creates a new Job and assigned A to the job, but also all future
processes spawned by A. This allows us to listen in on events, such as, when all
processes in the job are finished, but also allows us to propagate exit codes from
_exec calls.
The only reason we need this at all is because we don't interact with just actual
native code on Windows, and instead have a lot of ported POSIX code.
The Job handle is returned to the user because Jobs have additional benefits as well,
such as allowing you to specify resource limits on the to be spawned process.
*/
ProcHandle
runInteractiveProcess (wchar_t *cmd, wchar_t *workingDirectory,
wchar_t *environment,
int fdStdIn, int fdStdOut, int fdStdErr,
int *pfdStdInput, int *pfdStdOutput, int *pfdStdError,
int flags, bool useJobObject, HANDLE *hJob)
{
STARTUPINFO sInfo;
PROCESS_INFORMATION pInfo;
HANDLE hStdInputRead = INVALID_HANDLE_VALUE;
HANDLE hStdInputWrite = INVALID_HANDLE_VALUE;
HANDLE hStdOutputRead = INVALID_HANDLE_VALUE;
HANDLE hStdOutputWrite = INVALID_HANDLE_VALUE;
HANDLE hStdErrorRead = INVALID_HANDLE_VALUE;
HANDLE hStdErrorWrite = INVALID_HANDLE_VALUE;
BOOL close_fds = ((flags & RUN_PROCESS_IN_CLOSE_FDS) != 0);
// We always pass a wide environment block, so we MUST set this flag
DWORD dwFlags = CREATE_UNICODE_ENVIRONMENT;
BOOL status;
BOOL inherit;
ZeroMemory(&sInfo, sizeof(sInfo));
sInfo.cb = sizeof(sInfo);
sInfo.dwFlags = STARTF_USESTDHANDLES;
ZeroMemory(&pInfo, sizeof(pInfo));
if (fdStdIn == -1) {
if (!mkAnonPipe(&hStdInputRead, TRUE, &hStdInputWrite, FALSE))
goto cleanup_err;
sInfo.hStdInput = hStdInputRead;
} else if (fdStdIn == -2) {
sInfo.hStdInput = NULL;
} else if (fdStdIn == 0) {
// Don't duplicate stdin, as console handles cannot be
// duplicated and inherited. urg.
sInfo.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
} else {
// The handle might not be inheritable, so duplicate it
status = DuplicateHandle(GetCurrentProcess(),
(HANDLE) _get_osfhandle(fdStdIn),
GetCurrentProcess(), &hStdInputRead,
0,
TRUE, /* inheritable */
DUPLICATE_SAME_ACCESS);
if (!status) goto cleanup_err;
sInfo.hStdInput = hStdInputRead;
}
if (fdStdOut == -1) {
if (!mkAnonPipe(&hStdOutputRead, FALSE, &hStdOutputWrite, TRUE))
goto cleanup_err;
sInfo.hStdOutput = hStdOutputWrite;
} else if (fdStdOut == -2) {
sInfo.hStdOutput = NULL;
} else if (fdStdOut == 1) {
// Don't duplicate stdout, as console handles cannot be
// duplicated and inherited. urg.
sInfo.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);
} else {
// The handle might not be inheritable, so duplicate it
status = DuplicateHandle(GetCurrentProcess(),
(HANDLE) _get_osfhandle(fdStdOut),
GetCurrentProcess(), &hStdOutputWrite,
0,
TRUE, /* inheritable */
DUPLICATE_SAME_ACCESS);
if (!status) goto cleanup_err;
sInfo.hStdOutput = hStdOutputWrite;
}
if (fdStdErr == -1) {
if (!mkAnonPipe(&hStdErrorRead, TRUE, &hStdErrorWrite, TRUE))
goto cleanup_err;
sInfo.hStdError = hStdErrorWrite;
} else if (fdStdErr == -2) {
sInfo.hStdError = NULL;
} else if (fdStdErr == 2) {
// Don't duplicate stderr, as console handles cannot be
// duplicated and inherited. urg.
sInfo.hStdError = GetStdHandle(STD_ERROR_HANDLE);
} else {
/* The handle might not be inheritable, so duplicate it */
status = DuplicateHandle(GetCurrentProcess(),
(HANDLE) _get_osfhandle(fdStdErr),
GetCurrentProcess(), &hStdErrorWrite,
0,
TRUE, /* inheritable */
DUPLICATE_SAME_ACCESS);
if (!status) goto cleanup_err;
sInfo.hStdError = hStdErrorWrite;
}
if (sInfo.hStdInput != GetStdHandle(STD_INPUT_HANDLE) &&
sInfo.hStdOutput != GetStdHandle(STD_OUTPUT_HANDLE) &&
sInfo.hStdError != GetStdHandle(STD_ERROR_HANDLE) &&
(flags & RUN_PROCESS_IN_NEW_GROUP) == 0)
dwFlags |= CREATE_NO_WINDOW; // Run without console window only when both output and error are redirected
// See #3231
if (close_fds && fdStdIn == 0 && fdStdOut == 1 && fdStdErr == 2) {
inherit = FALSE;
} else {
inherit = TRUE;
}
if ((flags & RUN_PROCESS_IN_NEW_GROUP) != 0) {
dwFlags |= CREATE_NEW_PROCESS_GROUP;
}
if ((flags & RUN_PROCESS_DETACHED) != 0) {
dwFlags |= DETACHED_PROCESS;
}
if ((flags & RUN_PROCESS_NEW_CONSOLE) != 0) {
dwFlags |= CREATE_NEW_CONSOLE;
}
/* If we're going to use a job object, then we have to create
the thread suspended.
See Note [Windows exec interaction]. */
if (useJobObject)
{
dwFlags |= CREATE_SUSPENDED;
*hJob = createJob();
if (!*hJob)
{
goto cleanup_err;
}
} else {
*hJob = NULL;
}
if (!CreateProcess(NULL, cmd, NULL, NULL, inherit, dwFlags, environment, workingDirectory, &sInfo, &pInfo))
{
goto cleanup_err;
}
if (useJobObject && hJob && *hJob)
{
// Then associate the process and the job;
if (!AssignProcessToJobObject (*hJob, pInfo.hProcess))
{
goto cleanup_err;
}
// And now that we've associated the new process with the job
// we can actively resume it.
ResumeThread (pInfo.hThread);
}
CloseHandle(pInfo.hThread);
// Close the ends of the pipes that were inherited by the
// child process. This is important, otherwise we won't see
// EOF on these pipes when the child process exits.
if (hStdInputRead != INVALID_HANDLE_VALUE) CloseHandle(hStdInputRead);
if (hStdOutputWrite != INVALID_HANDLE_VALUE) CloseHandle(hStdOutputWrite);
if (hStdErrorWrite != INVALID_HANDLE_VALUE) CloseHandle(hStdErrorWrite);
*pfdStdInput = _open_osfhandle((intptr_t) hStdInputWrite, _O_WRONLY);
*pfdStdOutput = _open_osfhandle((intptr_t) hStdOutputRead, _O_RDONLY);
*pfdStdError = _open_osfhandle((intptr_t) hStdErrorRead, _O_RDONLY);
return pInfo.hProcess;
cleanup_err:
if (hStdInputRead != INVALID_HANDLE_VALUE) CloseHandle(hStdInputRead);
if (hStdInputWrite != INVALID_HANDLE_VALUE) CloseHandle(hStdInputWrite);
if (hStdOutputRead != INVALID_HANDLE_VALUE) CloseHandle(hStdOutputRead);
if (hStdOutputWrite != INVALID_HANDLE_VALUE) CloseHandle(hStdOutputWrite);
if (hStdErrorRead != INVALID_HANDLE_VALUE) CloseHandle(hStdErrorRead);
if (hStdErrorWrite != INVALID_HANDLE_VALUE) CloseHandle(hStdErrorWrite);
if (useJobObject && hJob && *hJob ) CloseHandle(*hJob);
maperrno();
return NULL;
}
int
terminateProcess (ProcHandle handle)
{
if (!TerminateProcess ((HANDLE) handle, 1)) {
DWORD e = GetLastError();
DWORD exitCode;
/*
This is a crude workaround that is taken from libuv. For some reason
TerminateProcess() can fail with ERROR_ACCESS_DENIED if the process
already terminated. This situation can be detected by using
GetExitCodeProcess() to check if the exit code is availble. Unfortunately
this function succeeds and gives exit code 259 (STILL_ACTIVE) if the
process is still running. So there is no way to ditinguish a process
that exited with 259 and a process that did not exit because we had
insufficient access to terminate it.
One would expect WaitForSingleObject() to be the solid solution. But this
function does return WAIT_TIMEOUT in that situation. Even if called
after GetExitCodeProcess().
*/
if (e == ERROR_ACCESS_DENIED && GetExitCodeProcess((HANDLE) handle, &exitCode) && exitCode != STILL_ACTIVE)
return 0;
SetLastError(e);
maperrno();
return -1;
}
return 0;
}
int
terminateJob (ProcHandle handle)
{
if (!TerminateJobObject ((HANDLE)handle, 1)) {
maperrno();
return -1;
}
return 0;
}
int
getProcessExitCode (ProcHandle handle, int *pExitCode)
{
*pExitCode = 0;
if (WaitForSingleObject((HANDLE) handle, 1) == WAIT_OBJECT_0)
{
if (GetExitCodeProcess((HANDLE) handle, (DWORD *) pExitCode) == 0)
{
maperrno();
return -1;
}
return 1;
}
return 0;
}
int
waitForProcess (ProcHandle handle, int *pret)
{
DWORD retCode;
if (WaitForSingleObject((HANDLE) handle, INFINITE) == WAIT_OBJECT_0)
{
if (GetExitCodeProcess((HANDLE) handle, &retCode) == 0)
{
maperrno();
return -1;
}
*pret = retCode;
return 0;
}
maperrno();
return -1;
}
// Returns true on success.
int
waitForJobCompletion ( HANDLE hJob )
{
int process_count = 16;
JOBOBJECT_BASIC_PROCESS_ID_LIST *pid_list = NULL;
while (true) {
size_t pid_list_size = sizeof(JOBOBJECT_BASIC_PROCESS_ID_LIST) + sizeof(ULONG_PTR) * (process_count - 1);
if (pid_list == NULL) {
pid_list = malloc(pid_list_size);
pid_list->NumberOfAssignedProcesses = process_count;
}
// Find a process in the job...
bool success = QueryInformationJobObject(
hJob,
JobObjectBasicProcessIdList,
pid_list,
pid_list_size,
NULL);
if (!success && GetLastError() == ERROR_MORE_DATA) {
process_count *= 2;
free(pid_list);
pid_list = NULL;
continue;
} else if (!success) {
free(pid_list);
maperrno();
return false;
}
if (pid_list->NumberOfProcessIdsInList == 0) {
// We're done
free(pid_list);
return true;
}
HANDLE pHwnd = OpenProcess(SYNCHRONIZE, TRUE, pid_list->ProcessIdList[0]);
if (pHwnd == NULL) {
switch (GetLastError()) {
case ERROR_INVALID_PARAMETER:
case ERROR_INVALID_HANDLE:
// Presumably the process terminated; try again.
continue;
default:
free(pid_list);
maperrno();
return false;
}
}
// Wait for it to finish...
if (WaitForSingleObject(pHwnd, INFINITE) != WAIT_OBJECT_0) {
free(pid_list);
maperrno();
CloseHandle(pHwnd);
return false;
}
// The process signalled, loop again to try the next process.
CloseHandle(pHwnd);
}
}
#endif /* Win32 */
|