1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# OPTIONS_GHC -Wno-inline-rule-shadowing #-}
-- The RULES for the methods of class Arrow may never fire
-- e.g. compose/arr; see #10528
-----------------------------------------------------------------------------
-- |
-- Module : Control.Arrow
-- Copyright : (c) Ross Paterson 2002
-- License : BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Basic arrow definitions, based on
--
-- * /Generalising Monads to Arrows/, by John Hughes,
-- /Science of Computer Programming/ 37, pp67-111, May 2000.
--
-- plus a couple of definitions ('returnA' and 'loop') from
--
-- * /A New Notation for Arrows/, by Ross Paterson, in /ICFP 2001/,
-- Firenze, Italy, pp229-240.
--
-- These papers and more information on arrows can be found at
-- <http://www.haskell.org/arrows/>.
module Control.Arrow (
-- * Arrows
Arrow(..), Kleisli(..),
-- ** Derived combinators
returnA,
(^>>), (>>^),
(>>>), (<<<), -- reexported
-- ** Right-to-left variants
(<<^), (^<<),
-- * Monoid operations
ArrowZero(..), ArrowPlus(..),
-- * Conditionals
ArrowChoice(..),
-- * Arrow application
ArrowApply(..), ArrowMonad(..), leftApp,
-- * Feedback
ArrowLoop(..)
) where
import Data.Tuple ( fst, snd, uncurry )
import Data.Either
import Control.Monad.Fix
import Control.Category
import GHC.Base hiding ( (.), id )
import GHC.Generics (Generic, Generic1)
infixr 5 <+>
infixr 3 ***
infixr 3 &&&
infixr 2 +++
infixr 2 |||
infixr 1 ^>>, >>^
infixr 1 ^<<, <<^
-- | The basic arrow class.
--
-- Instances should satisfy the following laws:
--
-- * @'arr' id = 'id'@
--
-- * @'arr' (f >>> g) = 'arr' f >>> 'arr' g@
--
-- * @'first' ('arr' f) = 'arr' ('first' f)@
--
-- * @'first' (f >>> g) = 'first' f >>> 'first' g@
--
-- * @'first' f >>> 'arr' 'fst' = 'arr' 'fst' >>> f@
--
-- * @'first' f >>> 'arr' ('id' *** g) = 'arr' ('id' *** g) >>> 'first' f@
--
-- * @'first' ('first' f) >>> 'arr' assoc = 'arr' assoc >>> 'first' f@
--
-- where
--
-- > assoc ((a,b),c) = (a,(b,c))
--
-- The other combinators have sensible default definitions,
-- which may be overridden for efficiency.
class Category a => Arrow a where
{-# MINIMAL arr, (first | (***)) #-}
-- | Lift a function to an arrow.
arr :: (b -> c) -> a b c
-- | Send the first component of the input through the argument
-- arrow, and copy the rest unchanged to the output.
first :: a b c -> a (b,d) (c,d)
first = (*** id)
-- | A mirror image of 'first'.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
second :: a b c -> a (d,b) (d,c)
second = (id ***)
-- | Split the input between the two argument arrows and combine
-- their output. Note that this is in general not a functor.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(***) :: a b c -> a b' c' -> a (b,b') (c,c')
f *** g = first f >>> arr swap >>> first g >>> arr swap
where swap ~(x,y) = (y,x)
-- | Fanout: send the input to both argument arrows and combine
-- their output.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(&&&) :: a b c -> a b c' -> a b (c,c')
f &&& g = arr (\b -> (b,b)) >>> f *** g
{-# RULES
"compose/arr" forall f g .
(arr f) . (arr g) = arr (f . g)
"first/arr" forall f .
first (arr f) = arr (first f)
"second/arr" forall f .
second (arr f) = arr (second f)
"product/arr" forall f g .
arr f *** arr g = arr (f *** g)
"fanout/arr" forall f g .
arr f &&& arr g = arr (f &&& g)
"compose/first" forall f g .
(first f) . (first g) = first (f . g)
"compose/second" forall f g .
(second f) . (second g) = second (f . g)
#-}
-- Ordinary functions are arrows.
-- | @since 2.01
instance Arrow (->) where
arr f = f
-- (f *** g) ~(x,y) = (f x, g y)
-- sorry, although the above defn is fully H'98, nhc98 can't parse it.
(***) f g ~(x,y) = (f x, g y)
-- | Kleisli arrows of a monad.
newtype Kleisli m a b = Kleisli { runKleisli :: a -> m b }
-- | @since 4.14.0.0
deriving instance Generic (Kleisli m a b)
-- | @since 4.14.0.0
deriving instance Generic1 (Kleisli m a)
-- | @since 4.14.0.0
deriving instance Functor m => Functor (Kleisli m a)
-- | @since 4.14.0.0
instance Applicative m => Applicative (Kleisli m a) where
pure = Kleisli . const . pure
{-# INLINE pure #-}
Kleisli f <*> Kleisli g = Kleisli $ \x -> f x <*> g x
{-# INLINE (<*>) #-}
Kleisli f *> Kleisli g = Kleisli $ \x -> f x *> g x
{-# INLINE (*>) #-}
Kleisli f <* Kleisli g = Kleisli $ \x -> f x <* g x
{-# INLINE (<*) #-}
-- | @since 4.14.0.0
instance Alternative m => Alternative (Kleisli m a) where
empty = Kleisli $ const empty
{-# INLINE empty #-}
Kleisli f <|> Kleisli g = Kleisli $ \x -> f x <|> g x
{-# INLINE (<|>) #-}
-- | @since 4.14.0.0
instance Monad m => Monad (Kleisli m a) where
Kleisli f >>= k = Kleisli $ \x -> f x >>= \a -> runKleisli (k a) x
{-# INLINE (>>=) #-}
-- | @since 4.14.0.0
instance MonadPlus m => MonadPlus (Kleisli m a) where
mzero = Kleisli $ const mzero
{-# INLINE mzero #-}
Kleisli f `mplus` Kleisli g = Kleisli $ \x -> f x `mplus` g x
{-# INLINE mplus #-}
-- | @since 3.0
instance Monad m => Category (Kleisli m) where
id = Kleisli return
(Kleisli f) . (Kleisli g) = Kleisli (\b -> g b >>= f)
-- | @since 2.01
instance Monad m => Arrow (Kleisli m) where
arr f = Kleisli (return . f)
first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d))
second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c))
-- | The identity arrow, which plays the role of 'return' in arrow notation.
returnA :: Arrow a => a b b
returnA = arr id
-- | Precomposition with a pure function.
(^>>) :: Arrow a => (b -> c) -> a c d -> a b d
f ^>> a = arr f >>> a
-- | Postcomposition with a pure function.
(>>^) :: Arrow a => a b c -> (c -> d) -> a b d
a >>^ f = a >>> arr f
-- | Precomposition with a pure function (right-to-left variant).
(<<^) :: Arrow a => a c d -> (b -> c) -> a b d
a <<^ f = a <<< arr f
-- | Postcomposition with a pure function (right-to-left variant).
(^<<) :: Arrow a => (c -> d) -> a b c -> a b d
f ^<< a = arr f <<< a
class Arrow a => ArrowZero a where
zeroArrow :: a b c
-- | @since 2.01
instance MonadPlus m => ArrowZero (Kleisli m) where
zeroArrow = Kleisli (\_ -> mzero)
-- | A monoid on arrows.
class ArrowZero a => ArrowPlus a where
-- | An associative operation with identity 'zeroArrow'.
(<+>) :: a b c -> a b c -> a b c
-- | @since 2.01
instance MonadPlus m => ArrowPlus (Kleisli m) where
Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x)
-- | Choice, for arrows that support it. This class underlies the
-- @if@ and @case@ constructs in arrow notation.
--
-- Instances should satisfy the following laws:
--
-- * @'left' ('arr' f) = 'arr' ('left' f)@
--
-- * @'left' (f >>> g) = 'left' f >>> 'left' g@
--
-- * @f >>> 'arr' 'Left' = 'arr' 'Left' >>> 'left' f@
--
-- * @'left' f >>> 'arr' ('id' +++ g) = 'arr' ('id' +++ g) >>> 'left' f@
--
-- * @'left' ('left' f) >>> 'arr' assocsum = 'arr' assocsum >>> 'left' f@
--
-- where
--
-- > assocsum (Left (Left x)) = Left x
-- > assocsum (Left (Right y)) = Right (Left y)
-- > assocsum (Right z) = Right (Right z)
--
-- The other combinators have sensible default definitions, which may
-- be overridden for efficiency.
class Arrow a => ArrowChoice a where
{-# MINIMAL (left | (+++)) #-}
-- | Feed marked inputs through the argument arrow, passing the
-- rest through unchanged to the output.
left :: a b c -> a (Either b d) (Either c d)
left = (+++ id)
-- | A mirror image of 'left'.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
right :: a b c -> a (Either d b) (Either d c)
right = (id +++)
-- | Split the input between the two argument arrows, retagging
-- and merging their outputs.
-- Note that this is in general not a functor.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(+++) :: a b c -> a b' c' -> a (Either b b') (Either c c')
f +++ g = left f >>> arr mirror >>> left g >>> arr mirror
where
mirror :: Either x y -> Either y x
mirror (Left x) = Right x
mirror (Right y) = Left y
-- | Fanin: Split the input between the two argument arrows and
-- merge their outputs.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(|||) :: a b d -> a c d -> a (Either b c) d
f ||| g = f +++ g >>> arr untag
where
untag (Left x) = x
untag (Right y) = y
{-# RULES
"left/arr" forall f .
left (arr f) = arr (left f)
"right/arr" forall f .
right (arr f) = arr (right f)
"sum/arr" forall f g .
arr f +++ arr g = arr (f +++ g)
"fanin/arr" forall f g .
arr f ||| arr g = arr (f ||| g)
"compose/left" forall f g .
left f . left g = left (f . g)
"compose/right" forall f g .
right f . right g = right (f . g)
#-}
-- | @since 2.01
instance ArrowChoice (->) where
left f = f +++ id
right f = id +++ f
f +++ g = (Left . f) ||| (Right . g)
(|||) = either
-- | @since 2.01
instance Monad m => ArrowChoice (Kleisli m) where
left f = f +++ arr id
right f = arr id +++ f
f +++ g = (f >>> arr Left) ||| (g >>> arr Right)
Kleisli f ||| Kleisli g = Kleisli (either f g)
-- | Some arrows allow application of arrow inputs to other inputs.
-- Instances should satisfy the following laws:
--
-- * @'first' ('arr' (\\x -> 'arr' (\\y -> (x,y)))) >>> 'app' = 'id'@
--
-- * @'first' ('arr' (g >>>)) >>> 'app' = 'second' g >>> 'app'@
--
-- * @'first' ('arr' (>>> h)) >>> 'app' = 'app' >>> h@
--
-- Such arrows are equivalent to monads (see 'ArrowMonad').
class Arrow a => ArrowApply a where
app :: a (a b c, b) c
-- | @since 2.01
instance ArrowApply (->) where
app (f,x) = f x
-- | @since 2.01
instance Monad m => ArrowApply (Kleisli m) where
app = Kleisli (\(Kleisli f, x) -> f x)
-- | The 'ArrowApply' class is equivalent to 'Monad': any monad gives rise
-- to a 'Kleisli' arrow, and any instance of 'ArrowApply' defines a monad.
newtype ArrowMonad a b = ArrowMonad (a () b)
-- | @since 4.6.0.0
instance Arrow a => Functor (ArrowMonad a) where
fmap f (ArrowMonad m) = ArrowMonad $ m >>> arr f
-- | @since 4.6.0.0
instance Arrow a => Applicative (ArrowMonad a) where
pure x = ArrowMonad (arr (const x))
ArrowMonad f <*> ArrowMonad x = ArrowMonad (f &&& x >>> arr (uncurry id))
-- | @since 2.01
instance ArrowApply a => Monad (ArrowMonad a) where
ArrowMonad m >>= f = ArrowMonad $
m >>> arr (\x -> let ArrowMonad h = f x in (h, ())) >>> app
-- | @since 4.6.0.0
instance ArrowPlus a => Alternative (ArrowMonad a) where
empty = ArrowMonad zeroArrow
ArrowMonad x <|> ArrowMonad y = ArrowMonad (x <+> y)
-- | @since 4.6.0.0
instance (ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a)
-- | Any instance of 'ArrowApply' can be made into an instance of
-- 'ArrowChoice' by defining 'left' = 'leftApp'.
leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d)
leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) |||
(\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app
-- | The 'loop' operator expresses computations in which an output value
-- is fed back as input, although the computation occurs only once.
-- It underlies the @rec@ value recursion construct in arrow notation.
-- 'loop' should satisfy the following laws:
--
-- [/extension/]
-- @'loop' ('arr' f) = 'arr' (\\ b -> 'fst' ('fix' (\\ (c,d) -> f (b,d))))@
--
-- [/left tightening/]
-- @'loop' ('first' h >>> f) = h >>> 'loop' f@
--
-- [/right tightening/]
-- @'loop' (f >>> 'first' h) = 'loop' f >>> h@
--
-- [/sliding/]
-- @'loop' (f >>> 'arr' ('id' *** k)) = 'loop' ('arr' ('id' *** k) >>> f)@
--
-- [/vanishing/]
-- @'loop' ('loop' f) = 'loop' ('arr' unassoc >>> f >>> 'arr' assoc)@
--
-- [/superposing/]
-- @'second' ('loop' f) = 'loop' ('arr' assoc >>> 'second' f >>> 'arr' unassoc)@
--
-- where
--
-- > assoc ((a,b),c) = (a,(b,c))
-- > unassoc (a,(b,c)) = ((a,b),c)
--
class Arrow a => ArrowLoop a where
loop :: a (b,d) (c,d) -> a b c
-- | @since 2.01
instance ArrowLoop (->) where
loop f b = let (c,d) = f (b,d) in c
-- | Beware that for many monads (those for which the '>>=' operation
-- is strict) this instance will /not/ satisfy the right-tightening law
-- required by the 'ArrowLoop' class.
--
-- @since 2.01
instance MonadFix m => ArrowLoop (Kleisli m) where
loop (Kleisli f) = Kleisli (liftM fst . mfix . f')
where f' x y = f (x, snd y)
|